
OO Analysis: Domain Model

Case Study

Here we discuss information system of “Hire-n-Ride-Bike” shop which we have described

in lecture notes “OO Analysis - Use-Case-Modeling-A Case Study”

In Islamabad for environment protection, a bike(bicycle) hire shop (Hire-n-Ride-Bike) is

started Super-market. Main aim is to encourage residents and tourists to explore Islamabad

and Margalla hills tracks on bikes. For that purpose, shop maintains a range of bikes (ladies,

sports, children, mountain etc.).

At present all the activities of the shop are maintained through registers and paper receipts.

All the information about the bikes (bike number, type, size, make, model, daily charge rate

and deposit) are recorded on a register. The shop also has a small workshop which is looked

after by a mechanic who is responsible to keep the bikes in running conditions and inspects

the bike when it is returned to access any damages to a bike.

Shop owner is eager to have a computer-based system to manage all the activities for bike

hiring and to maintain bikes inventory. To help the owner we offer to create a software-

based solution for his hire-n-ride-bike shop.

We have already created use case model in lecture notes “OO Analysis - Use-Case-

Modeling-A Case Study”

Here we will create Domain Model (Basic Class Diagram).

A class diagram that sets out to model all of the classes in the problem domain. We perform

Objects Identification by identifying Nouns in requirements description of “Hire-n-Ride-

Bike” requirements and highlighted in blue as listed below:

We list identified objects by removing duplicates as in the following:

list of bikes charge rate, deposit
details of bikes: bike number, type, size, make, model, daily
record of customers past hire transactions
bike number of days
details of a hire transaction: start date, estimated duration
customer different amounts of time
return of a bike total amount due
state of each bike
extra details about specialist bikes

Now from the above list of candidate objects, we reject those that are unsuitable by

considering following factors:
Attributes: Sometimes it is clear that a noun is an attribute of an object rather than an object

itself. Bike number, type, size, make, model, daily charge rate and deposit are clearly

attributes of a bike object. Similarly, hire transaction sounds like a possible object, with

start date and estimated duration as its attributes.

Redundant: Sometimes the same concept appears in the text in different guises. Here past

hire transactions and hire transaction are probably the same thing. Different amounts of

time, number of days and estimated duration are probably the same thing – all three refer to

the length of a hire (in any case they are attributes, not objects).

Too vague: If we don't know exactly what is meant by a term it is unlikely to make a good

object/class. For this reason, we reject return of a bike as an object.

Too tied up with physical inputs and outputs: This refers to something that exists in the real

world but is a product of the system or data input to the system and not an object in its own

right. Receipt qualifies for rejection under this heading. Receipt is an output.

Associations: If there is data associated with the relationship, then we probably want to

model it as an object.

Really an operation: If a candidate object seems to have no data associated with it, then it

might be better modelled as an operation on another class.

By performing noun analysis and considering above stated factors we derive following four

candidate classes:
Bike Customer
Hire transaction Specialist bike

These classes are listed below in a visual form:

We can use these classes to form the basis of our class diagram, i.e. initial class diagram for

“Hire-n-Ride-Bike” system.

Next, we determine relationships between classes. As we know that relationships between

classes can be linked with one another in three ways:

• a sub-/superclass relationship (Generalization)

• by means of an Aggregation/Composition

• via Associations

By guessing about relationships between classes, we could have a first draft of domain

model as shown below:

It is much simpler and less messy to store the dates in a Hire class associated with both the

Customer class and the Bike class. Each hire object will contain the attributes relating to

only one bike and one customer.

To cater payment issue, in requirement R5 customer will expect to pay for multiple bikes at

once and have a single receipt. With the classes we have so far we have to see where to put

data about payments and an operation to work out totals. The customer will expect to pay

for all bikes at once and have a single receipt. With the classes we have so far it's hard to

see where to put data about payments and an operation to work out totals. We introduce a

separate Payment class and store details about financial transactions.

Now we have five classes as shown below:

Next, we identify the attributes, and we can describe our classes in more detail using

attributes. One can define meaningful data types for attributes even though these may not be

included in the specification. Use cases descriptions and scenarios are also helpful in

defining attributes. We write attributes of respective classes in attributes section of visual

classes as shown below:

Along with attributes of classes, and relationships between classes identified we can refine

our first of draft of domain model as depicted below:

A :Customer can make many :Hires, but a :Hire is a specific transaction relating to just one

:Customer. A :Payment is made by just one :Customer but a :Customer can make many

:Payments. Similarly a :Hire is for one :Bike only. A :Bike, on the other hand, can be hired

many times or may not be hired at all. These situations are depicted in in association

multiplicities of the model.

These seems to be a generalization association (Class-Subclass Relationship) also referred

Inheritance between Bike and SpecialistBike class. With this association being depicted in

the final form of the domain model as shown below:

