
File System 

 
The file system resides permanently on secondary storage. Now we discuss file storage on 

the disk and access mechanisms for performing IO operations. We describe ways to 

structure file, allocate disk space, recover freed space,  track the locations of data, and to 

interface other parts of the operating system to secondary storage.  

 

File Concept 

A file is a named collection of related information that is recorded on secondary storage. 

From a user’s perspective, a file is the smallest allotment of logical secondary storage; that 

is, data cannot be written to secondary storage unless they are within a file. Commonly, 

files represent programs (both source and object forms) and data. Data files may be 

numeric, alphabetic, alphanumeric, or binary. Normal structure of a data file is usually 

described by using the terms: field, record and file.  

Field: the basic element of data. An individual field contains a single value, such as an 

employee’s last name, a date, or the value of a sensor reading. It is characterized by its 

length and data type (e.g., ASCII string, decimal). Depending on the file design, fields may 

be fixed length or variable length. 

Record:  a collection of related fields that can be treated as a unit by some application 

program. For example, an employee record would contain such fields as name, identity 

number, job classification, date of hire, and so on. Records may be of fixed length or 

variable length. A record will be of variable length if some of its fields are of variable 

length or if the number of fields may vary.  

File: a collection of similar records. The file is treated as a single entity by users and 

applications and may be referenced by name. Files have file names and may be created and 

deleted. Access control restrictions usually apply at the file level. That is, in a shared 

system, users and programs are granted or denied access to entire files. Some file systems 

are structured only in terms of fields, not records. In that case, a file is a collection of fields. 

Files may be free form, such as text files, or may be formatted rigidly. In general, a 

file is a sequence of bits, bytes, lines, or records, the meaning of which is defined by the 

file’s creator and user. The information in a file is defined by its creator. Many different 

types of information may be stored in a file - source or executable programs, numeric or 

text data, photos, music, video, and so on. A file has a certain defined structure, which 

depends on its type. A text file is a sequence of characters organized into lines (and possibly 

pages). A source file is a sequence of functions, each of which is further organized as 

declarations followed by executable statements. An executable file is a series of code 

sections that the loader can bring into memory and execute. 

 

File Attributes 

A file is named, for the convenience of its human users, and is referred to by its name. A 

name is usually a string of characters, such as myexample.c. Some systems differentiate 

between uppercase and lowercase characters in names, whereas other systems do not. When 

a file is named, it becomes independent of the process, the user, and even the system that 

created it. For instance, one user might create the file myexample.c, and another user might 

edit that file by specifying its name. The file’s owner might write the file to a USB disk, 

send it as an e-mail attachment, or copy it across a network, and it could still be called 

myexample.c on the destination system.  



 

A file’s attributes typically consist of following:  

Name:  symbolic file name is the only information kept in human readable form. 

Identifier: the unique tag, usually a number, identifies the file within the file system; it is the 

non-human-readable name for the file. 

Type: this information is needed for systems that support different types of files. 

Location: a pointer to a device and to the location of the file on that device. 

Size:  current size of the file (in bytes, words, or blocks) and possibly the maximum allowed 

size are included in this attribute. 

Protection: access-control information determines who can do reading, writing, executing, 

and so on. 

Time, date, and user identification: this information may be kept for creation, last modification, 

and last use. These data can be useful for protection, security, and usage monitoring.  

The information about all files is kept in the directory structure, which also resides 

on secondary storage. Typically, a directory entry consists of the file’s name and its unique 

identifier. The identifier in turn locates the other file attributes. It may take more than a 

kilobyte to record this information for each file. In a system with many files, the size of the 

directory itself may be megabytes. Because directories, like files, must be nonvolatile, they 

must be stored on the device and brought into memory piecemeal, as needed.  

 

File Operations 

A file is an abstract data type. To define a file properly, we need to consider the operations 

that can be performed on files. The operating system can provide system calls to create, 

write, read, reposition, delete, and truncate files. Here we describe what operating system 

must do to perform each of these six basic file operations.  

Creating a file: Two steps are necessary to create a file. First, space in the file system must 

be found for the file. Second, an entry for the new file must be made in the directory. 

Writing a file: To write a file, we make a system call specifying both the name of the file 

and the information to be written to the file. Given the name of the file, the system searches 

the directory to find the file’s location. The system must keep a write pointer to the location 

in the file where the next write is to take place. The write pointer must be updated whenever 

a write occurs. 

Reading a file: To read from a file, we use a system call that specifies the name of the file 

and where (in memory) the next block of the file should be put. Again, the directory is 

searched for the associated entry, and the system needs to keep a read pointer to the location 

in the file where the next read is to take place. Once the read has taken place, the read 

pointer is updated. Because a process is usually either reading from or writing to a file, the 

current operation location can be kept as a per-process current file-position pointer. Both 

the read and write operations use this same pointer, saving space and reducing system 

complexity.  

Repositioning within a file: The directory is searched for the appropriate entry, and the 

current-file-position pointer is repositioned to a given value. Repositioning within a file 

need not involve any actual I/O. This file operation is also known as a file seek. 

Deleting a file: To delete a file, we search the directory for the named file. Having found the 

associated directory entry, we release all file space, so that it can be reused by other files, 

and erase the directory entry.  

Truncating a file. The user may want to erase the contents of a file but keep its attributes. 

Rather than forcing the user to delete the file and then recreate it, this function allows all 



attributes to remain unchanged – except for file length - but lets the file be reset to length 

zero and its file space released. 

 

These six basic operations comprise the minimal set of required file operations. Other 

common operations include appending new information to the end of an existing file and 

renaming an existing file. These primitive operations can then be combined to perform 

other file operations. For instance, we can create a copy of a file – or copy the file to 

another I/O device, such as a printer or a display - by creating a new file and then reading 

from the old and writing to the new. We also want to have operations that allow a user to 

get and set the various attributes of a file. For example, we may want to have operations 

that allow a user to determine the status of a file, such as the file’s length, and to set file 

attributes, such as the file’s owner. 

 

Most of the file operations mentioned involve searching the directory for the entry 

associated with the named file. To avoid this constant searching, many systems require that 

an open() system call be made before a file is first used. The operating system keeps a table, 

called the open-file table, containing information about all open files. When a file operation 

is requested, the file is specified via an index into this table, so no searching is required. 

When the file is no longer being actively used, it is closed by the process, and the operating 

system removes its entry from the open-file table. create() and delete() are system calls that 

work with closed rather than open files. 

 

Some systems implicitly open a file when the first reference to it is made. The file is 

automatically closed when the job or program that opened the file terminates. Most 

systems, however, require that the programmer open a file explicitly with the open() system 

call before that file can be used. The open() operation takes a file name and searches the 

directory, copying the directory entry into the open-file table. The open() call can also 

accept access mode information - create, read-only, read–write, append-only, and so on. 

This mode is checked against the file’s permissions. If the request mode is allowed, the file 

is opened for the process. The open() system call typically returns a pointer to the entry in 

the open-file table. This pointer, not the actual file name, is used in all I/O operations, 

avoiding any further searching and simplifying the system-call interface.  

 

File Types 

While designing a file system, the decision has to be made whether the operating system 

should recognize and support file types. If an operating system recognizes the type of a file, 

it can then operate on the file in reasonable ways. A common technique for implementing 

file types is to include the type as part of the file name. The name is split into two parts - a 

name and an extension, usually separated by a period. In this way, the user and the 

operating system can tell from the name alone what the type of a file is. Most operating 

systems allow users to specify a file name as a sequence of characters followed by a period 

and terminated by an extension made up of additional characters. Examples include 

myresume.docx, localserver.c, and ReaderThread.cpp.  

The system uses the extension to indicate the type of the file and the type of operations that 

can be done on that file. Only a file with a .com, .exe, or .sh extension can be executed, for 

instance. The .com and .exe files are two forms of binary executable files, whereas the .sh 

file is a shell script containing, in ASCII format, commands to the operating system. 

Application programs also use extensions to indicate file types in which they are interested. 



For example, Microsoft-Word word processor expects its files to end with a .doc or .docx 

extension.  

 

File Structure 

File types also can be used to indicate the internal structure of the file. Source and object 

files have structures that match the expectations of the programs that read them. Further, 

certain files must conform to a required structure that is understood by the operating 

system. For example, the operating system requires that an executable file have a specific 

structure so that it can determine where in memory to load the file and what the location of 

the first instruction is. Some operating systems extend this idea into a set of system-

supported file structures, with sets of special operations for manipulating files with those 

structures.  

Some operating systems impose (and support) a minimal number of file structures. This 

approach has been adopted in UNIX, Windows, and others. UNIX considers each file to be 

a sequence of 8-bit bytes; no interpretation of these bits is made by the operating system. 

This scheme provides maximum flexibility but little support. Each application program 

must include its own code to interpret an input file as to the appropriate structure. However, 

all operating systems must support at least one structure - that of an executable file - so that 

the system is able to load and run programs.  

 

Internal File Structure 

Internally, locating an offset within a file can be complicated for the operating system. Disk 

systems typically have a well-defined block size determined by the size of a sector. All disk 

I/O is performed in units of one block (physical record), and all blocks are the same size. It 

is unlikely that the physical record size will exactly match the length of the desired logical 

record. Logical records may even vary in length. Packing a number of logical records into 

physical blocks is a common solution to this problem. For example, the UNIX operating 

system defines all files to be simply streams of bytes. Each byte is individually addressable 

by its offset from the beginning (or end) of the file. In this case, the logical record size is 1 

byte. The file system automatically packs and unpacks bytes into physical disk blocks - say, 

512 bytes per block - as necessary. 

The logical record size, physical block size, and packing technique determine how 

many logical records are in each physical block. The packing can be done either by the 

user’s application program or by the operating system. In either case, the file may be 

considered a sequence of blocks. All the basic I/O functions operate in terms of blocks. The 

conversion from logical records to physical blocks is a relatively simple software problem.  

Because disk space is always allocated in blocks, some portion of the last block of 

each file is generally wasted. All file systems suffer from internal fragmentation; the larger 

the block size, the greater the internal fragmentation. 

 

Access Methods 

Files store information. When it is used, this information must be accessed and read into 

computer memory. The information in the file can be accessed in several ways. Some 

systems provide only one access method for files. while others support many access 

methods and choosing the right one for a particular application is a major design problem. 

Sequential Access: the simplest access method.  Information in the file is processed in order, 

one record after the other. This mode of access is by far the most common; for example, 

editors and compilers usually access files in this fashion. Reads and writes make up the 



bulk of the operations on a file. A read operation - read next() - reads the next portion of the 

file and automatically advances a file pointer, which tracks the I/O location. Similarly, the 

write operation - write next() - appends to the end of the file and advances to the end of the 

newly written material (the new end of file). Such a file can be reset to the beginning, and 

on some systems, a program may be able to skip forward or backward n records for some 

integer n - perhaps only for n = 1. Sequential access, which is depicted in Figure 11.4, is 

based on a tape model of a file and works as well on sequential-access devices as it does on 

direct-access ones. 

Direct Access: The method is based on a disk model of a file, since disks allow direct access 

to any file block. Here, a file is made up of fixed-length logical records that allow programs 

to read and write records rapidly in no particular order. For direct access, the file is viewed 

as a numbered sequence of blocks or records. Thus, we may read block 14, then read block 

53, and then write block 7. There are no restrictions on the order of reading or writing for a 

direct-access file. 

Direct-access files are of great use for immediate access to large amounts of 

information. Databases are often of this type. When a query concerning a particular subject 

arrives, we compute which block contains the answer and then read that block directly to 

provide the desired information. As a simple example, on an airline-reservation system, we 

might store all the information about a particular flight (say flight PK317) in the block 

identified by the flight number. Thus, the number of available seats for flight PK317 is 

stored in block 713 of the reservation file. To store information about a larger set, such as 

people, we might compute a hash function on the people’s names or search a small in-

memory index to determine a block to read and search. 

For the direct-access method, the file operations must be modified to include the 

block number as a parameter. Thus, we have read(n), where n is the block number, rather 

than read_next(), and write(n) rather than write_next(). An alternative approach is to retain 

read_next() and write_next(), as with sequential access, and to add an operation position 

file(n) where n is the block number. Then, to effect a read(n), we would position_file(n) and 

then read_next().  

The block number provided by the user to the operating system is normally a relative 

block number. A relative block number is an index relative to the beginning of the file. 

Thus, the first relative block of the file is 0, the next is 1, and so on, even though the 

absolute disk address may be 14703 for the first block and 3192 for the second. The use of 

relative block numbers allows the operating system to decide where the file should be 

placed and helps to prevent the user from accessing portions of the file system that may not 

be part of his file. Some systems start their relative block numbers at 0; others start at 1. 

How, then, does the system satisfy a request for record N in a file? Assuming we 

have a logical record length L, the request for record N is turned into an I/O request for L 

bytes starting at location L ∗ (N) within the file (assuming the first record is N = 0). Since 

logical records are of a fixed size, it is also easy to read, write, or delete a record. 

Not all operating systems support both sequential and direct access for files. Some 

systems allow only sequential file access; others allow only direct access. Some systems 

require that a file be defined as sequential or direct when it is created. Such a file can be 

accessed only in a manner consistent with its declaration.  

Indexed sequential-access method is built on top of a direct-access method. This method 

generally involves the construction of an index for the file. The index, like an index in the 

back of a book, contains pointers to the various blocks. To find a record in the file, we first 

search the index and then use the pointer to access the file directly and to find the desired 



record. For example, a retail-price file might list the universal product codes (UPCs) for 

items, with the associated prices. Each record consists of a 10-digit UPC and a 6-digit price, 

for a 16-byte record. If our disk has 1,024 bytes per block, we can store 64 records per 

block. A file of 120,000 records would occupy about 2,000 blocks (2 million bytes). By 

keeping the file sorted by UPC, we can define an index consisting of the first UPC in each 

block. This index would have 2,000 entries of 10 digits each, or 20,000 bytes, and thus 

could be kept in memory. To find the price of a particular item, we can make a binary 

search of the index. From this search, we learn exactly which block contains the desired 

record and access that block. This structure allows us to search a large file doing little I/O. 

With large files, the index file itself may become too large to be kept in memory. One 

solution is to create an index for the index file. The primary index file contains pointers to 

secondary index files, which point to the actual data items.  

 

Files are allocated disk blocks, and this allocation is made by using different approach. To 

allocate disk blocks, file system also keeps track of free blocks. Next, we describe different 

disk blocks allocation methods and free disk space management. 

 

File Allocation and Disk Space Management 

 

Disk Management: Free Space 

Since disk space is limited, we need to reuse the space from deleted files for new files, if 

possible. To keep track of free disk space, the system maintains a free-space list. The free-

space list records all free disk blocks- those not allocated to some file or directory. To 

create a file, we search the free-space list for the required amount of space and allocate that 

space to the new file. This space is then removed from the free-space list. When a file is 

deleted, its disk space is added to the free-space list. The free-space list, may be 

implemented in following ways:  

Bit Vector: Frequently, the free-space list is implemented as a bit map or bit vector. Each 

block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit 

is 0. For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 

18, 25, 26, and 27 are free and the rest of the blocks are allocated. The free-space bit map 

would be  

001111001111110001100000011100000 ... 

The main advantage of this approach is its relative simplicity and its efficiency in 

finding the first free block or n consecutive free blocks on the disk. Indeed, many 

computers supply bit-manipulation instructions that can be used effectively for that 

purpose. One technique for finding the first free block on a system that uses a bit-vector to 

allocate disk space is to sequentially check each word in the bit map to see whether that 

value is not 0, since a 0-valued word contains only 0 bits and represents a set of allocated 

blocks. The first non-0 word is scanned for the first 1 bit, which is the location of the first 

free block. The calculation of the block number is 

(number of bits per word) × (number of 0-value words) + offset of first 1 bit. 

Again, we see hardware features driving software functionality. Unfortunately, bit vectors 

are inefficient unless the entire vector is kept in main memory (and is written to disk 

occasionally for recovery needs). Keeping it in main memory is possible for smaller disks 

but not necessarily for larger ones. A 1.3-GB disk with 512-byte blocks would need a bit 

map of over 332 KB to track its free blocks, although clustering the blocks in groups of four 

reduces this number to around 83 KB per disk. A 1-TB disk with 4-KB blocks requires 256 



MB to store its bit map. Given that disk size constantly increases, the problem with bit 

vectors will continue to escalate as well. 

Linked List: Another approach to free-space management is to link together all the free disk 

blocks, keeping a pointer to the first free block in a special location on the disk and caching 

it in memory. This first block contains a pointer to the next free disk block, and so on. 

Recall our earlier example, in which blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, 

and 27 were free and the rest of the blocks were allocated. In this situation, we would keep 

a pointer to block 2 as the first free block. Block 2 would contain a pointer to block 3, 

which would point to block 4, which would point to block 5, which would point to 

block 8, and so on. This scheme is not efficient; to traverse the list, we must read each 

block, which requires substantial I/O time. Fortunately however, traversing the free list is 

not a frequent action. Usually, the operating system simply needs a free block so that it can 

allocate that block to a file, so the first block in the free list is used. The FAT method 

incorporates free-block accounting into the allocation data structure. No separate method is 

needed. 

Grouping: A modification of the free-list approach stores the addresses of n free blocks 

in the first free block. The first n−1 of these blocks are actually free. The last block contains 

the addresses of another n free blocks, and so on. The addresses of a large number of free 

blocks can now be found quickly, unlike the situation when the standard linked-list 

approach is used. 

Counting: Another approach takes advantage of the fact that, generally, several contiguous 

blocks may be allocated or freed simultaneously, particularly when space is allocated with 

the contiguous-allocation algorithm or through clustering. Thus, rather than keeping a list of 

n free disk addresses, we can keep the address of the first free block and the number (n) of 

free contiguous blocks that follow the first block. Each entry in the free-space list then 

consists of a disk address and a count. Although each entry requires more space than would 

a simple disk address, the overall list is shorter, as long as the count is generally greater 

than 1. Note that this method of tracking free space is similar to the extent method of 

allocating blocks. These entries can be stored in a balanced tree, rather than a linked list, for 

efficient lookup, insertion, and deletion. 

 

 

Disk Block Allocation Methods 

 

The direct-access nature of disks gives us flexibility in the implementation of files. In 

almost every case, many files are stored on the same disk. The main problem is how to 

allocate space to these files so that disk space is utilized effectively and files can be 

accessed quickly. Three major methods of allocating disk space are in wide use: contiguous, 

linked, and indexed. Each method has advantages and disadvantages. Although some 

systems support all three, it is more common for a system to use one method for all files 

within a file-system type. 

 

Contiguous Allocation 

Contiguous allocation requires that each file occupy a set of contiguous blocks on the disk. 

Disk addresses define a linear ordering on the disk. With this ordering, assuming that only 

one job is accessing the disk, accessing block b +1 after block b normally requires no head 

movement. When head movement is needed (from the last sector of one cylinder to the first 

sector of the next cylinder), the head need only move from one track to the next. Thus, the 



number of disk seeks required for accessing contiguously allocated files is minimal, as is 

seek time when a seek is finally needed.  

Contiguous allocation of a file is defined by the disk address and length (in block 

units) of the first block. If the file is n blocks long and starts at location b, then it occupies 

blocks b, b + 1, b + 2, ..., b + n − 1. The directory entry for each file indicates the address of 

the starting block and the length of the area allocated for this file as shown in Figure-9xx 

 

 
Figure-x: Contiguous Allocation 

Accessing a file that has been allocated contiguously is easy. For sequential access, 

the file system remembers the disk address of the last block referenced and, when 

necessary, reads the next block. For direct access to block i of a file that starts at block b, 

we can immediately access block b + i. Thus, both sequential and direct access can be 

supported by contiguous allocation.  

For any type of access, contiguous allocation requires only one access to get a disk 

block. Since we can easily keep the initial address of the file in memory, we can calculate 

immediately the disk address of the ith block (or the next block) and read it directly. 

Contiguous allocation has some problems, however. One difficulty is finding space 

for a new file. The system chosen to manage free space determines how this task is 

accomplished; Any management system can be used, but some are slower than others. 

The contiguous-allocation problem can be seen as a particular application of the 

general dynamic storage-allocation problem, having main disadvantage of external 

fragmentation. To overcome external fragmentation, normally offline compaction is 

performed on the file system. 

 

 

Modified Contiguous Allocation 

In a modified contiguous-allocation scheme, a contiguous chunk of space is allocated 

initially. Then, if that amount proves not to be large enough, another chunk of contiguous 

space, known as an extent, is added. The location of a file’s blocks is then recorded as a 

location and a block count, plus a link to the first block of the next extent. On some 

systems, the owner of the file can set the extent size, but this setting results in inefficiencies 

if the owner is incorrect. Internal fragmentation can still be a problem if the extents are too 

large, and external fragmentation can become a problem as extents of varying sizes are 

allocated and deallocated.  

 

Linked (Chained) Allocation 

Linked allocation solves all problems of contiguous allocation. With linked allocation, each 

file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. 



The directory contains a pointer to the first and last blocks of the file. For example, a file of 

five blocks might start at block 9 and continue at block 16, then block 1, then block 10, and 

finally block 25 as shown in (Figure 12.6). Each block contains a pointer to the next block. 

These pointers are not made available to the user. Thus, if each block is 512 bytes in size, 

and a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.  

 

 
Figure-xx: Linked Allocation 

To create a new file, we simply create a new entry in the directory. With linked allocation, 

each directory entry has a pointer to the first disk block of the file. This pointer is initialized 

to null (the end-of-list pointer value) to signify an empty file. The size field is also set to 

‘0’. A write to the file causes the free-space management system to find a free block, and 

this new block is written to and is linked to the end of the file. To read a file, we simply 

read blocks by following the pointers from block to block. There is no external 

fragmentation with linked allocation, and any free block on the free-space list can be used 

to satisfy a request. The size of a file need not be declared when the file is created. A file 

can continue to grow as long as free blocks are available. Consequently, it is never 

necessary to compact disk space.  

Linked allocation does have disadvantages, however. The major problem is that it 

can be used effectively only for sequential-access files. To find the ith block of a file, we 

must start at the beginning of that file and follow the pointers until we get to the ith block. 

Each access to a pointer requires a disk read, and some require a disk seek. Consequently, it 

is inefficient to support a direct-access capability for linked-allocation files.  

Another disadvantage is the space required for the pointers. If a pointer requires 4 

bytes out of a 512-byte block, then 0.78 percent of the disk is being used for pointers, rather 

than for information. Each file requires slightly more space than it would otherwise. 

The usual solution to this problem is to collect blocks into multiples, called clusters, 

and to allocate clusters rather than blocks. For instance, the file system may define a cluster 

as four blocks and operate on the disk only in cluster units. Pointers then use a much 

smaller percentage of the file’s disk space. This method allows the logical-to-physical block 

mapping to remain simple but improves disk throughput (because fewer disk-head seeks are 

required) and decreases the space needed for block allocation and free-list management. 

The cost of this approach is an increase in internal fragmentation, because more space is 

wasted when a cluster is partially full than when a block is partially full. Clusters can be 

used to improve the disk-access time for many other algorithms as well, so they are used in 

most file systems. 

Yet another problem of linked allocation is reliability. Recall that the files are linked 

together by pointers scattered all over the disk, and consider what would happen if a pointer 



were lost or damaged. A bug in the operating-system software or a disk hardware failure 

might result in picking up the wrong pointer. This error could in turn result in linking into 

the free-space list or into another file. One partial solution is to use doubly linked lists, and 

another is to store the file name and relative block number in each block. However, these 

schemes require even more overhead for each file. 

 

File Allocation Table (FAT) 

An important variation on linked allocation is the use of a file-allocation table (FAT). This 

simple but efficient method of disk-space allocation is separating the linkage information of 

blocks of a file in a table. A section of disk at the beginning of each volume is set aside to 

contain the table. The table has one entry for each disk block and is indexed by block 

number. The directory entry contains the block number of the first block of the file. The 

table entry indexed by that block number contains the block number of the next block in the 

file. This chain continues until it reaches the last block, which has a special end-of-file 

value as the table entry. An unused block is indicated by a table value of 0. Allocating a 

new block to a file is a simple matter of finding the first 0-valued table entry and replacing 

the previous end-of-file value with the address of the new block. The 0 is then replaced with 

the end-of-file value. An illustrative example is the FAT structure shown in Figure 12.7 for 

a file consisting of disk blocks 217, 618, and 339.  

 

 
    Figure XX: File Allocation Table 

 

The FAT allocation scheme can result in a significant number of disk head seeks, unless the 

FAT is cached. The disk head must move to the start of the volume to read the FAT and 

find the location of the block in question, then move to the location of the block itself. In 

the worst case, both moves occur for each of the blocks. A benefit is that random-access 

time is improved, because the disk head can find the location of any block by reading the 

information in the FAT.  

Linked allocation solves the external-fragmentation and size-declaration problems of 

contiguous allocation. However, in the absence of a FAT, linked allocation cannot support 

efficient direct access, since the pointers to the blocks are scattered with the blocks 

themselves all over the disk and must be retrieved in order.  

 

Indexed Allocation 

Indexed allocation solves the problem of pointers of scattered blocks by bringing all the 

pointers together into one location; the index block. Each file has its own index block, 



which is an array of disk-block addresses. The ith entry in the index block points to the ith 

block of the file. The directory contains the address of the index block (Figure 12.8). To 

find and read the ith block, we use the pointer in the ith index-block entry.  

 

  
Figure XX: Indexed Allocation  

 

When the file is created, all pointers in the index block are set to null. When the ith block is 

first written, a block is obtained from the free-space manager, and its address is put in the 

ith index-block entry.  

Indexed allocation supports direct access, without suffering from external 

fragmentation, because any free block on the disk can satisfy a request for more space. 

Indexed allocation does suffer from wasted space, however. The pointer overhead of the 

index block is generally greater than the pointer overhead of linked allocation. Consider a 

common case in which we have a file of only one or two blocks. With linked allocation, we 

lose the space of only one pointer per block. With indexed allocation, an entire index block 

must be allocated, even if only one or two pointers will be non-null. 

This point raises the question of how large the index block should be. Every file 

must have an index block, so we want the index block to be as small as possible. If the 

index block is too small, however, it will not be able to hold enough pointers for a large file, 

and a mechanism will have to be available to deal with this issue. Mechanisms for this 

purpose include the following: 

Linked Scheme: An index block is normally one disk block. Thus, it can be read and written 

directly by itself. To allow for large files, we can link together several index blocks. For 

example, an index block might contain a small header giving the name of the file and a set 

of the first 100 disk-block addresses. The next address (the last word in the index block) is 

null (for a small file) or is a pointer to another index block (for a large file).  

 

 



Multilevel Index: A variant of linked representation uses a first-level index block to point to 

a set of second-level index blocks, which in turn point to the file blocks. To access a block, 

the operating system uses the first-level index to find a second-level index block and then 

uses that block to find the desired data block. This approach could be continued to a third or 

fourth level, depending on the desired maximum file size. With 4,096-byte blocks, we could 

store 1,024 four-byte pointers in an index block. Two levels of indexes allow 1,048,576 

data blocks and a file size of up to 4 GB. 

 

 
Combined Scheme: Another alternative, used in UNIX-based file systems, is to keep the 

first, say, 15 pointers of the index block in the file’s inode. The first 12 of these pointers 

point to direct blocks; that is, they contain addresses of blocks that contain data of the file. 

Thus, the data for small files (of no more than 12 blocks) do not need a separate index 

block. If the block size is 4KB, then up to 48KB of data can be accessed directly. The next 

three pointers point to indirect blocks. The first points to a single indirect block, which is an 

index block containing not data but the addresses of blocks that do contain data. The second 

points to a double indirect block, which contains the address of a block that contains the 

addresses of blocks that contain pointers to the actual data blocks. The last pointer contains 

the address of a triple indirect block. A UNIX inode is shown in Figure 12.9.) 

 

    
Figure-xx 

  

Under this method, the number of blocks that can be allocated to a file exceeds the amount 

of space addressable by the 4-byte file pointers used by many operating systems. A 32-bit 

file pointer reaches only 232 bytes, or 4 GB. Many UNIX and Linux implementations now 



support 64-bit file pointers, which allows files and file systems to be several exbibytes in 

size.  

Indexed-allocation schemes suffer from some of the same performance problems as 

does linked allocation. Specifically, the index blocks can be cached in memory, but the data 

blocks may be spread all over a volume. 

 

 


