File System

The file system resides permanently on secondary storage. Now we discuss file storage on
the disk and access mechanisms for performing 10 operations. We describe ways to
structure file, allocate disk space, recover freed space, track the locations of data, and to
interface other parts of the operating system to secondary storage.

File Concept
A file is a named collection of related information that is recorded on secondary storage.
From a user’s perspective, a file is the smallest allotment of logical secondary storage; that
is, data cannot be written to secondary storage unless they are within a file. Commonly,
files represent programs (both source and object forms) and data. Data files may be
numeric, alphabetic, alphanumeric, or binary. Normal structure of a data file is usually
described by using the terms: field, record and file.
Field: the basic element of data. An individual field contains a single value, such as an
employee’s last name, a date, or the value of a sensor reading. It is characterized by its
length and data type (e.g., ASCII string, decimal). Depending on the file design, fields may
be fixed length or variable length.
Record: a collection of related fields that can be treated as a unit by some application
program. For example, an employee record would contain such fields as name, identity
number, job classification, date of hire, and so on. Records may be of fixed length or
variable length. A record will be of variable length if some of its fields are of variable
length or if the number of fields may vary.
File: a collection of similar records. The file is treated as a single entity by users and
applications and may be referenced by name. Files have file names and may be created and
deleted. Access control restrictions usually apply at the file level. That is, in a shared
system, users and programs are granted or denied access to entire files. Some file systems
are structured only in terms of fields, not records. In that case, a file is a collection of fields.
Files may be free form, such as text files, or may be formatted rigidly. In general, a
file is a sequence of bits, bytes, lines, or records, the meaning of which is defined by the
file’s creator and user. The information in a file is defined by its creator. Many different
types of information may be stored in a file - source or executable programs, numeric or
text data, photos, music, video, and so on. A file has a certain defined structure, which
depends on its type. A text file is a sequence of characters organized into lines (and possibly
pages). A source file is a sequence of functions, each of which is further organized as
declarations followed by executable statements. An executable file is a series of code
sections that the loader can bring into memory and execute.

File Attributes

A file is named, for the convenience of its human users, and is referred to by its name. A
name is usually a string of characters, such as myexample.c. Some systems differentiate
between uppercase and lowercase characters in names, whereas other systems do not. When
a file is named, it becomes independent of the process, the user, and even the system that
created it. For instance, one user might create the file myexample.c, and another user might
edit that file by specifying its name. The file’s owner might write the file to a USB disk,
send it as an e-mail attachment, or copy it across a network, and it could still be called
myexample.c on the destination system.

A file’s attributes typically consist of following:

Name: symbolic file name is the only information kept in human readable form.

Identifier: the unique tag, usually a number, identifies the file within the file system; it is the
non-human-readable name for the file.

Type: this information is needed for systems that support different types of files.

Location: a pointer to a device and to the location of the file on that device.

Size: current size of the file (in bytes, words, or blocks) and possibly the maximum allowed
size are included in this attribute.

Protection: access-control information determines who can do reading, writing, executing,
and so on.

Time, date, and user identification: this information may be kept for creation, last modification,
and last use. These data can be useful for protection, security, and usage monitoring.

The information about all files is kept in the directory structure, which also resides
on secondary storage. Typically, a directory entry consists of the file’s name and its unique
identifier. The identifier in turn locates the other file attributes. It may take more than a
kilobyte to record this information for each file. In a system with many files, the size of the
directory itself may be megabytes. Because directories, like files, must be nonvolatile, they
must be stored on the device and brought into memory piecemeal, as needed.

File Operations

A file is an abstract data type. To define a file properly, we need to consider the operations
that can be performed on files. The operating system can provide system calls to create,
write, read, reposition, delete, and truncate files. Here we describe what operating system
must do to perform each of these six basic file operations.

Creating a file: Two steps are necessary to create a file. First, space in the file system must
be found for the file. Second, an entry for the new file must be made in the directory.
Writing a file: To write a file, we make a system call specifying both the name of the file
and the information to be written to the file. Given the name of the file, the system searches
the directory to find the file’s location. The system must keep a write pointer to the location
in the file where the next write is to take place. The write pointer must be updated whenever
a write occurs.

Reading a file: To read from a file, we use a system call that specifies the name of the file
and where (in memory) the next block of the file should be put. Again, the directory is
searched for the associated entry, and the system needs to keep a read pointer to the location
in the file where the next read is to take place. Once the read has taken place, the read
pointer is updated. Because a process is usually either reading from or writing to a file, the
current operation location can be kept as a per-process current file-position pointer. Both
the read and write operations use this same pointer, saving space and reducing system
complexity.

Repositioning within a file: The directory is searched for the appropriate entry, and the
current-file-position pointer is repositioned to a given value. Repositioning within a file
need not involve any actual 1/0. This file operation is also known as a file seek.

Deleting a file: To delete a file, we search the directory for the named file. Having found the
associated directory entry, we release all file space, so that it can be reused by other files,
and erase the directory entry.

Truncating a file. The user may want to erase the contents of a file but keep its attributes.
Rather than forcing the user to delete the file and then recreate it, this function allows all

attributes to remain unchanged — except for file length - but lets the file be reset to length
zero and its file space released.

These six basic operations comprise the minimal set of required file operations. Other
common operations include appending new information to the end of an existing file and
renaming an existing file. These primitive operations can then be combined to perform
other file operations. For instance, we can create a copy of a file — or copy the file to
another 1/O device, such as a printer or a display - by creating a new file and then reading
from the old and writing to the new. We also want to have operations that allow a user to
get and set the various attributes of a file. For example, we may want to have operations
that allow a user to determine the status of a file, such as the file’s length, and to set file
attributes, such as the file’s owner.

Most of the file operations mentioned involve searching the directory for the entry
associated with the named file. To avoid this constant searching, many systems require that
an open() system call be made before a file is first used. The operating system keeps a table,
called the open-file table, containing information about all open files. When a file operation
IS requested, the file is specified via an index into this table, so no searching is required.
When the file is no longer being actively used, it is closed by the process, and the operating
system removes its entry from the open-file table. create() and delete() are system calls that
work with closed rather than open files.

Some systems implicitly open a file when the first reference to it is made. The file is
automatically closed when the job or program that opened the file terminates. Most
systems, however, require that the programmer open a file explicitly with the open() system
call before that file can be used. The open() operation takes a file name and searches the
directory, copying the directory entry into the open-file table. The open() call can also
accept access mode information - create, read-only, read—write, append-only, and so on.
This mode is checked against the file’s permissions. If the request mode is allowed, the file
is opened for the process. The open() system call typically returns a pointer to the entry in
the open-file table. This pointer, not the actual file name, is used in all 1/0 operations,
avoiding any further searching and simplifying the system-call interface.

File Types

While designing a file system, the decision has to be made whether the operating system
should recognize and support file types. If an operating system recognizes the type of a file,
it can then operate on the file in reasonable ways. A common technique for implementing
file types is to include the type as part of the file name. The name is split into two parts - a
name and an extension, usually separated by a period. In this way, the user and the
operating system can tell from the name alone what the type of a file is. Most operating
systems allow users to specify a file name as a sequence of characters followed by a period
and terminated by an extension made up of additional characters. Examples include
myresume.docx, localserver.c, and ReaderThread.cpp.

The system uses the extension to indicate the type of the file and the type of operations that
can be done on that file. Only a file with a .com, .exe, or .sh extension can be executed, for
instance. The .com and .exe files are two forms of binary executable files, whereas the .sh
file is a shell script containing, in ASCII format, commands to the operating system.
Application programs also use extensions to indicate file types in which they are interested.

For example, Microsoft-Word word processor expects its files to end with a .doc or .docx
extension.

File Structure

File types also can be used to indicate the internal structure of the file. Source and object
files have structures that match the expectations of the programs that read them. Further,
certain files must conform to a required structure that is understood by the operating
system. For example, the operating system requires that an executable file have a specific
structure so that it can determine where in memory to load the file and what the location of
the first instruction is. Some operating systems extend this idea into a set of system-
supported file structures, with sets of special operations for manipulating files with those
structures.

Some operating systems impose (and support) a minimal number of file structures. This
approach has been adopted in UNIX, Windows, and others. UNIX considers each file to be
a sequence of 8-bit bytes; no interpretation of these bits is made by the operating system.
This scheme provides maximum flexibility but little support. Each application program
must include its own code to interpret an input file as to the appropriate structure. However,
all operating systems must support at least one structure - that of an executable file - so that
the system is able to load and run programs.

Internal File Structure

Internally, locating an offset within a file can be complicated for the operating system. Disk
systems typically have a well-defined block size determined by the size of a sector. All disk
I/0 is performed in units of one block (physical record), and all blocks are the same size. It
is unlikely that the physical record size will exactly match the length of the desired logical
record. Logical records may even vary in length. Packing a number of logical records into
physical blocks is a common solution to this problem. For example, the UNIX operating
system defines all files to be simply streams of bytes. Each byte is individually addressable
by its offset from the beginning (or end) of the file. In this case, the logical record size is 1
byte. The file system automatically packs and unpacks bytes into physical disk blocks - say,
512 bytes per block - as necessary.

The logical record size, physical block size, and packing technique determine how
many logical records are in each physical block. The packing can be done either by the
user’s application program or by the operating system. In either case, the file may be
considered a sequence of blocks. All the basic 1/O functions operate in terms of blocks. The
conversion from logical records to physical blocks is a relatively simple software problem.

Because disk space is always allocated in blocks, some portion of the last block of
each file is generally wasted. All file systems suffer from internal fragmentation; the larger
the block size, the greater the internal fragmentation.

Access Methods

Files store information. When it is used, this information must be accessed and read into
computer memory. The information in the file can be accessed in several ways. Some
systems provide only one access method for files. while others support many access
methods and choosing the right one for a particular application is a major design problem.
Sequential Access: the simplest access method. Information in the file is processed in order,
one record after the other. This mode of access is by far the most common; for example,
editors and compilers usually access files in this fashion. Reads and writes make up the

bulk of the operations on a file. A read operation - read next() - reads the next portion of the
file and automatically advances a file pointer, which tracks the 1/0O location. Similarly, the
write operation - write next() - appends to the end of the file and advances to the end of the
newly written material (the new end of file). Such a file can be reset to the beginning, and
on some systems, a program may be able to skip forward or backward n records for some
integer n - perhaps only for n = 1. Sequential access, which is depicted in Figure 11.4, is
based on a tape model of a file and works as well on sequential-access devices as it does on
direct-access ones.

Direct Access: The method is based on a disk model of a file, since disks allow direct access
to any file block. Here, a file is made up of fixed-length logical records that allow programs
to read and write records rapidly in no particular order. For direct access, the file is viewed
as a numbered sequence of blocks or records. Thus, we may read block 14, then read block
53, and then write block 7. There are no restrictions on the order of reading or writing for a
direct-access file.

Direct-access files are of great use for immediate access to large amounts of
information. Databases are often of this type. When a query concerning a particular subject
arrives, we compute which block contains the answer and then read that block directly to
provide the desired information. As a simple example, on an airline-reservation system, we
might store all the information about a particular flight (say flight PK317) in the block
identified by the flight number. Thus, the number of available seats for flight PK317 is
stored in block 713 of the reservation file. To store information about a larger set, such as
people, we might compute a hash function on the people’s names or search a small in-
memory index to determine a block to read and search.

For the direct-access method, the file operations must be modified to include the
block number as a parameter. Thus, we have read(n), where n is the block number, rather
than read_next(), and write(n) rather than write_next(). An alternative approach is to retain
read_next() and write_next(), as with sequential access, and to add an operation position
file(n) where n is the block number. Then, to effect a read(n), we would position_file(n) and
then read_next().

The block number provided by the user to the operating system is normally a relative
block number. A relative block number is an index relative to the beginning of the file.
Thus, the first relative block of the file is 0, the next is 1, and so on, even though the
absolute disk address may be 14703 for the first block and 3192 for the second. The use of
relative block numbers allows the operating system to decide where the file should be
placed and helps to prevent the user from accessing portions of the file system that may not
be part of his file. Some systems start their relative block numbers at 0; others start at 1.

How, then, does the system satisfy a request for record N in a file? Assuming we
have a logical record length L, the request for record N is turned into an /O request for L
bytes starting at location L * (N) within the file (assuming the first record is N = 0). Since
logical records are of a fixed size, it is also easy to read, write, or delete a record.

Not all operating systems support both sequential and direct access for files. Some
systems allow only sequential file access; others allow only direct access. Some systems
require that a file be defined as sequential or direct when it is created. Such a file can be
accessed only in a manner consistent with its declaration.

Indexed sequential-access method is built on top of a direct-access method. This method
generally involves the construction of an index for the file. The index, like an index in the
back of a book, contains pointers to the various blocks. To find a record in the file, we first
search the index and then use the pointer to access the file directly and to find the desired

record. For example, a retail-price file might list the universal product codes (UPCs) for
items, with the associated prices. Each record consists of a 10-digit UPC and a 6-digit price,
for a 16-byte record. If our disk has 1,024 bytes per block, we can store 64 records per
block. A file of 120,000 records would occupy about 2,000 blocks (2 million bytes). By
keeping the file sorted by UPC, we can define an index consisting of the first UPC in each
block. This index would have 2,000 entries of 10 digits each, or 20,000 bytes, and thus
could be kept in memory. To find the price of a particular item, we can make a binary
search of the index. From this search, we learn exactly which block contains the desired
record and access that block. This structure allows us to search a large file doing little 1/O.
With large files, the index file itself may become too large to be kept in memory. One
solution is to create an index for the index file. The primary index file contains pointers to
secondary index files, which point to the actual data items.

Files are allocated disk blocks, and this allocation is made by using different approach. To
allocate disk blocks, file system also keeps track of free blocks. Next, we describe different
disk blocks allocation methods and free disk space management.

File Allocation and Disk Space Management

Disk Management: Free Space
Since disk space is limited, we need to reuse the space from deleted files for new files, if
possible. To keep track of free disk space, the system maintains a free-space list. The free-
space list records all free disk blocks- those not allocated to some file or directory. To
create a file, we search the free-space list for the required amount of space and allocate that
space to the new file. This space is then removed from the free-space list. When a file is
deleted, its disk space is added to the free-space list. The free-space list, may be
implemented in following ways:
Bit Vector: Frequently, the free-space list is implemented as a bit map or bit vector. Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit
is 0. For example, consider a disk where blocks 2, 3, 4,5, 8, 9, 10, 11, 12, 13, 17,
18, 25, 26, and 27 are free and the rest of the blocks are allocated. The free-space bit map
would be

001111001111110001100000011100000 ...

The main advantage of this approach is its relative simplicity and its efficiency in
finding the first free block or n consecutive free blocks on the disk. Indeed, many
computers supply bit-manipulation instructions that can be used effectively for that
purpose. One technique for finding the first free block on a system that uses a bit-vector to
allocate disk space is to sequentially check each word in the bit map to see whether that
value is not 0, since a 0-valued word contains only 0 bits and represents a set of allocated
blocks. The first non-0 word is scanned for the first 1 bit, which is the location of the first
free block. The calculation of the block number is

(number of bits per word) x (number of 0-value words) + offset of first 1 bit.

Again, we see hardware features driving software functionality. Unfortunately, bit vectors
are inefficient unless the entire vector is kept in main memory (and is written to disk
occasionally for recovery needs). Keeping it in main memory is possible for smaller disks
but not necessarily for larger ones. A 1.3-GB disk with 512-byte blocks would need a bit
map of over 332 KB to track its free blocks, although clustering the blocks in groups of four
reduces this number to around 83 KB per disk. A 1-TB disk with 4-KB blocks requires 256

MB to store its bit map. Given that disk size constantly increases, the problem with bit
vectors will continue to escalate as well.

Linked List: Another approach to free-space management is to link together all the free disk
blocks, keeping a pointer to the first free block in a special location on the disk and caching
it in memory. This first block contains a pointer to the next free disk block, and so on.
Recall our earlier example, in which blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26,
and 27 were free and the rest of the blocks were allocated. In this situation, we would keep
a pointer to block 2 as the first free block. Block 2 would contain a pointer to block 3,
which would point to block 4, which would point to block 5, which would point to

block 8, and so on. This scheme is not efficient; to traverse the list, we must read each
block, which requires substantial 1/0 time. Fortunately however, traversing the free list is
not a frequent action. Usually, the operating system simply needs a free block so that it can
allocate that block to a file, so the first block in the free list is used. The FAT method
incorporates free-block accounting into the allocation data structure. No separate method is
needed.

Grouping: A modification of the free-list approach stores the addresses of n free blocks

in the first free block. The first n—1 of these blocks are actually free. The last block contains
the addresses of another n free blocks, and so on. The addresses of a large number of free
blocks can now be found quickly, unlike the situation when the standard linked-list
approach is used.

Counting: Another approach takes advantage of the fact that, generally, several contiguous
blocks may be allocated or freed simultaneously, particularly when space is allocated with
the contiguous-allocation algorithm or through clustering. Thus, rather than keeping a list of
n free disk addresses, we can keep the address of the first free block and the number (n) of
free contiguous blocks that follow the first block. Each entry in the free-space list then
consists of a disk address and a count. Although each entry requires more space than would
a simple disk address, the overall list is shorter, as long as the count is generally greater
than 1. Note that this method of tracking free space is similar to the extent method of
allocating blocks. These entries can be stored in a balanced tree, rather than a linked list, for
efficient lookup, insertion, and deletion.

Disk Block Allocation Methods

The direct-access nature of disks gives us flexibility in the implementation of files. In
almost every case, many files are stored on the same disk. The main problem is how to
allocate space to these files so that disk space is utilized effectively and files can be
accessed quickly. Three major methods of allocating disk space are in wide use: contiguous,
linked, and indexed. Each method has advantages and disadvantages. Although some
systems support all three, it is more common for a system to use one method for all files
within a file-system type.

Contiguous Allocation

Contiguous allocation requires that each file occupy a set of contiguous blocks on the disk.
Disk addresses define a linear ordering on the disk. With this ordering, assuming that only
one job is accessing the disk, accessing block b +1 after block b normally requires no head
movement. When head movement is needed (from the last sector of one cylinder to the first
sector of the next cylinder), the head need only move from one track to the next. Thus, the

number of disk seeks required for accessing contiguously allocated files is minimal, as is
seek time when a seek is finally needed.

Contiguous allocation of a file is defined by the disk address and length (in block
units) of the first block. If the file is n blocks long and starts at location b, then it occupies
blocks b,b+1,b+2,...,b+n— 1. The directory entry for each file indicates the address of
the starting block and the length of the area allocated for this file as shown in Figure-9xx

/_\ directory

i file start length

o] 1 21 3] count O 2

f tr 14 3
41 s[J e[707 mail 19 6
4
2

81 9101111 'f's’ 22

tr
12[11314151
16[117[J18[J19[]
mail
20[J21[J22[J23[]
24[J25[J26[J27[]

list

28[J29[J30[]31[]
_//
Figure-x: Contiguous Allocation

Accessing a file that has been allocated contiguously is easy. For sequential access,
the file system remembers the disk address of the last block referenced and, when
necessary, reads the next block. For direct access to block i of a file that starts at block b,
we can immediately access block b + i. Thus, both sequential and direct access can be
supported by contiguous allocation.

For any type of access, contiguous allocation requires only one access to get a disk
block. Since we can easily keep the initial address of the file in memory, we can calculate
immediately the disk address of the ith block (or the next block) and read it directly.

Contiguous allocation has some problems, however. One difficulty is finding space
for a new file. The system chosen to manage free space determines how this task is
accomplished; Any management system can be used, but some are slower than others.

The contiguous-allocation problem can be seen as a particular application of the
general dynamic storage-allocation problem, having main disadvantage of external
fragmentation. To overcome external fragmentation, normally offline compaction is
performed on the file system.

Modified Contiguous Allocation

In a modified contiguous-allocation scheme, a contiguous chunk of space is allocated
initially. Then, if that amount proves not to be large enough, another chunk of contiguous
space, known as an extent, is added. The location of a file’s blocks is then recorded as a
location and a block count, plus a link to the first block of the next extent. On some
systems, the owner of the file can set the extent size, but this setting results in inefficiencies
if the owner is incorrect. Internal fragmentation can still be a problem if the extents are too
large, and external fragmentation can become a problem as extents of varying sizes are
allocated and deallocated.

Linked (Chained) Allocation
Linked allocation solves all problems of contiguous allocation. With linked allocation, each
file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the disk.

The directory contains a pointer to the first and last blocks of the file. For example, a file of
five blocks might start at block 9 and continue at block 16, then block 1, then block 10, and
finally block 25 as shown in (Figure 12.6). Each block contains a pointer to the next block.
These pointers are not made available to the user. Thus, if each block is 512 bytes in size,
and a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

P W directory
\—f—/ file start end
jeep 9 25
o[[FtE2[1¥3[]

8] phiho[2111[]
12[C13[J14/115[]
C117z[C118[J19[]

20[]21 2[]23|j
24[J25F126[127[]
28[J29[130[131[]

SR
Figure-xx: Linked Allocation

To create a new file, we simply create a new entry in the directory. With linked allocation,
each directory entry has a pointer to the first disk block of the file. This pointer is initialized
to null (the end-of-list pointer value) to signify an empty file. The size field is also set to
‘0’. A write to the file causes the free-space management system to find a free block, and
this new block is written to and is linked to the end of the file. To read a file, we simply
read blocks by following the pointers from block to block. There is no external
fragmentation with linked allocation, and any free block on the free-space list can be used
to satisfy a request. The size of a file need not be declared when the file is created. A file
can continue to grow as long as free blocks are available. Consequently, it is never
necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem is that it
can be used effectively only for sequential-access files. To find the ith block of a file, we
must start at the beginning of that file and follow the pointers until we get to the ith block.
Each access to a pointer requires a disk read, and some require a disk seek. Consequently, it
is inefficient to support a direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer requires 4
bytes out of a 512-byte block, then 0.78 percent of the disk is being used for pointers, rather
than for information. Each file requires slightly more space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples, called clusters,
and to allocate clusters rather than blocks. For instance, the file system may define a cluster
as four blocks and operate on the disk only in cluster units. Pointers then use a much
smaller percentage of the file’s disk space. This method allows the logical-to-physical block
mapping to remain simple but improves disk throughput (because fewer disk-head seeks are
required) and decreases the space needed for block allocation and free-list management.
The cost of this approach is an increase in internal fragmentation, because more space is
wasted when a cluster is partially full than when a block is partially full. Clusters can be
used to improve the disk-access time for many other algorithms as well, so they are used in
most file systems.

Yet another problem of linked allocation is reliability. Recall that the files are linked
together by pointers scattered all over the disk, and consider what would happen if a pointer

16

were lost or damaged. A bug in the operating-system software or a disk hardware failure
might result in picking up the wrong pointer. This error could in turn result in linking into
the free-space list or into another file. One partial solution is to use doubly linked lists, and
another is to store the file name and relative block number in each block. However, these
schemes require even more overhead for each file.

File Allocation Table (FAT)

An important variation on linked allocation is the use of a file-allocation table (FAT). This
simple but efficient method of disk-space allocation is separating the linkage information of
blocks of a file in a table. A section of disk at the beginning of each volume is set aside to
contain the table. The table has one entry for each disk block and is indexed by block
number. The directory entry contains the block number of the first block of the file. The
table entry indexed by that block number contains the block number of the next block in the
file. This chain continues until it reaches the last block, which has a special end-of-file
value as the table entry. An unused block is indicated by a table value of 0. Allocating a
new block to a file is a simple matter of finding the first 0-valued table entry and replacing
the previous end-of-file value with the address of the new block. The 0 is then replaced with
the end-of-file value. An illustrative example is the FAT structure shown in Figure 12.7 for
a file consisting of disk blocks 217, 618, and 339.

directory entry
[test [eee T 217
name start block

217 618

339

618 339

no. of disk blocks -1

FAT

Figure XX: File Allocation Table

The FAT allocation scheme can result in a significant number of disk head seeks, unless the
FAT is cached. The disk head must move to the start of the volume to read the FAT and
find the location of the block in question, then move to the location of the block itself. In
the worst case, both moves occur for each of the blocks. A benefit is that random-access
time is improved, because the disk head can find the location of any block by reading the
information in the FAT.

Linked allocation solves the external-fragmentation and size-declaration problems of
contiguous allocation. However, in the absence of a FAT, linked allocation cannot support
efficient direct access, since the pointers to the blocks are scattered with the blocks
themselves all over the disk and must be retrieved in order.

Indexed Allocation
Indexed allocation solves the problem of pointers of scattered blocks by bringing all the
pointers together into one location; the index block. Each file has its own index block,

which is an array of disk-block addresses. The ith entry in the index block points to the ith
block of the file. The directory contains the address of the index block (Figure 12.8). To
find and read the ith block, we use the pointer in the ith index-block entry.

PP N directory
— file index block
o] 1EL\2D 3] leep 1
|
4[] 5[] 7]

8] ol J1o[N11[]
12118 14N

20 J21[J22[A23[]
24 J25[J26[J27[]

28[J29[J3o[J31[]

R
Figure XX: Indexed Allocation

When the file is created, all pointers in the index block are set to null. When the ith block is
first written, a block is obtained from the free-space manager, and its address is put in the
ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more space.
Indexed allocation does suffer from wasted space, however. The pointer overhead of the
index block is generally greater than the pointer overhead of linked allocation. Consider a
common case in which we have a file of only one or two blocks. With linked allocation, we
lose the space of only one pointer per block. With indexed allocation, an entire index block
must be allocated, even if only one or two pointers will be non-null.

This point raises the question of how large the index block should be. Every file
must have an index block, so we want the index block to be as small as possible. If the
index block is too small, however, it will not be able to hold enough pointers for a large file,
and a mechanism will have to be available to deal with this issue. Mechanisms for this
purpose include the following:

Linked Scheme: An index block is normally one disk block. Thus, it can be read and written
directly by itself. To allow for large files, we can link together several index blocks. For
example, an index block might contain a small header giving the name of the file and a set
of the first 100 disk-block addresses. The next address (the last word in the index block) is
null (for a small file) or is a pointer to another index block (for a large file).

file block = #sectors

indexblock = #sectors

TL?T

Multilevel Index: A variant of linked representation uses a first-level index block to point to
a set of second-level index blocks, which in turn point to the file blocks. To access a block,
the operating system uses the first-level index to find a second-level index block and then
uses that block to find the desired data block. This approach could be continued to a third or
fourth level, depending on the desired maximum file size. With 4,096-byte blocks, we could
store 1,024 four-byte pointers in an index block. Two levels of indexes allow 1,048,576
data blocks and a file size of up to 4 GB.

| — 1]
I = ~
\ \\
™ N
'\\
\\
outer-index

index table file
Combined Scheme: Another alternative, used in UNIX-based file systems, is to keep the
first, say, 15 pointers of the index block in the file’s inode. The first 12 of these pointers
point to direct blocks; that is, they contain addresses of blocks that contain data of the file.
Thus, the data for small files (of no more than 12 blocks) do not need a separate index
block. If the block size is 4KB, then up to 48KB of data can be accessed directly. The next
three pointers point to indirect blocks. The first points to a single indirect block, which is an
index block containing not data but the addresses of blocks that do contain data. The second
points to a double indirect block, which contains the address of a block that contains the
addresses of blocks that contain pointers to the actual data blocks. The last pointer contains
the address of a triple indirect block. A UNIX inode is shown in Figure 12.9.)

File Mode data
Link Count data
Owner ID
Group ID data "
File Size .
Direct0 (1k)
Direct1 (1k) data data
Direct2 (1k)
Direct3 (1K) data
[
L]
L]

AN

Direct4 (1k) .

Direct5 (1k)
data

Direct6 (1k)

Direct? (1k)

Direct8 (1k)
Direct9 (1k)
single indirect (256k) data
double indirect (65M)
triple indirect (16G) °)
Last Accessed [] -
Last Modified
Inode Modified data

Figure-xx

Under this method, the number of blocks that can be allocated to a file exceeds the amount
of space addressable by the 4-byte file pointers used by many operating systems. A 32-bit
file pointer reaches only 232 bytes, or 4 GB. Many UNIX and Linux implementations now

support 64-bit file pointers, which allows files and file systems to be several exbibytes in
size.

Indexed-allocation schemes suffer from some of the same performance problems as
does linked allocation. Specifically, the index blocks can be cached in memory, but the data
blocks may be spread all over a volume.

