
Inter Process Communication

Message Passing

Cooperating processes interact with one another, and a concurrent execution environment

provides synchronization and communication facilities. Processes need to be

synchronized to enforce mutual exclusion; cooperating processes may need to exchange

information. One approach to providing both of these functions is message passing.

Message-passing systems come in many forms. Here we describe a general introduction

and discuss features typically found in such systems. The actual function of message

passing is normally provided in the form of a pair of primitives and is the minimum set of

operations needed for processes to engage in message passing:
send (destination, message)
receive (source, message)

A link is established automatically between every pair of processes that want to

communicate. The processes need to know only each other’s identity to communicate. A

process sends information in the form of a message to another process designated by a

destination. A process receives information by executing the receive primitive, indicating

the source and the message.

Message Passing and Synchronization

The communication of a message between two processes implies some level of

synchronization between the two: The receiver cannot receive a message until it has been

sent by another process. In addition, we need to specify what happens to a process after it

issues a send or receive primitive. When a send primitive is executed in a process, there

are two possibilities: Either the sending process is blocked until the message is received,

or it is not blocked. Similarly, when a process issues a receive primitive, there are two

possibilities, in the first case if a message has previously been sent, the message is

received and execution continues. In the second case if there is no waiting message, then

either (a) the process is blocked until a message arrives, or (b) the process continues to

execute, abandoning the attempt to receive.

Thus, both the sender and receiver can be blocking or nonblocking. Three combinations

are common, although any particular system will usually have only one or two

combinations implemented:

• Blocking send, blocking receive: Both the sender and receiver are blocked until the

message is delivered; this is sometimes referred to as a rendezvous. This

combination allows for tight synchronization between processes.

• Nonblocking send, blocking receive: Although the sender may continue on, the

receiver is blocked until the requested message arrives. This is probably the most

useful combination. It allows a process to send one or more messages to a variety

of destinations as quickly as possible. A process that must receive a message

before it can do useful work needs to be blocked until such a message arrives. An

example is a server process that exists to provide a service or resource to other

processes.

• Nonblocking send, nonblocking receive: Neither party is required to wait.

The nonblocking send is more natural for many concurrent programming tasks. For

example, if it is used to request an output operation, such as printing, it allows the

requesting process to issue the request in the form of a message and then carry on.

For the receive primitive, the blocking version appears to be more natural for many

concurrent programming tasks. Generally, a process that requests a message will need the

expected information before proceeding.

Naming (Addressing) in Message Passing

Processes that want to communicate must have a way to refer to each other. It is

necessary to specify in the send primitive which process is to receive the message.

Similarly, most implementations allow a receiving process to indicate the source of a

message to be received. Specifying processes in send and receive primitives fall into two

categories: direct addressing and indirect addressing.

With direct addressing, each process that wants to communicate must explicitly

name the recipient or sender of the communication. In this scheme, the send() and

receive() primitives are defined as:

• send(X, message); Send a message to process X

• receive(Y, message); Receive a message from process Y

Here the send and receive primitives includes a specific identifier of the destination and

source process, respectively and show a symmetry in addressing/naming. In this case a

process explicitly designates a sending process. Thus, the process must know ahead of

time from which process a message is expected, which is effective for cooperating

concurrent processes. In situations, it is impossible to specify the anticipated source

process. An example is a printer server process, which will accept a print request message

from any other process. For such applications, asymmetric approach of addressing is

employed and only the sender names the recipient; the recipient is not required to name

the sender. In this scheme, the send() and receive() primitives are defined as follows:

• send(X, message); Send a message to process X.

• receive(id, message); Receive a message from any process.

In this case, the source parameter of the receive primitive possesses a value returned is

the name of the process with which communication has taken place.

In indirect addressing, messages are not sent directly from sender to receiver but rather

are sent to a shared data structure consisting of queues that can temporarily hold

messages. Such queues are generally referred to as mailboxes. Thus, for two processes to

communicate, one process sends a message to the appropriate mailbox and the other

process picks up the message from the mailbox. By decoupling the sender and receiver, it

allows greater flexibility in the use of messages. A process can communicate with

another process via a number of different mailboxes, but two processes can communicate

only if they have a shared mailbox. The send() and receive() primitives are defined as

follows:

• send(M, message); Send a message to mailbox M.

• receive(M, message); Receive a message from mailbox M.

The relationship between senders and receivers can be one to one, many to one, one to

many, or many to many. A one-to-one relationship allows a private communications link

to be set up between two processes. This insulates their interaction from erroneous

interference from other processes. A many-to-one relationship is useful for client/server

interaction; one process provides service to a number of other processes. In this case, the

mailbox is often referred to as a port. A one-to-many relationship allows for one sender

and multiple receivers; it is useful for applications where a message or some information

is to be broadcast to a set of processes. A many-to-many relationship allows multiple

server processes to provide concurrent service to multiple clients.

The association of processes to mailboxes can be either static or dynamic. Ports are often

statically associated with a particular process; that is, the port is created and assigned to

the process permanently. Similarly, a one-to-one relationship is typically defined

statically and permanently. When there are many senders, the association of a sender to a

mailbox may occur dynamically. Primitives such as connect and disconnect may be used

for this purpose.

Mailbox has owner and users. In the case of a port, it is typically owned by and created

by the receiving process. Thus, when the process is destroyed, the port is also destroyed.

For the general mailbox case, the OS may offer a create-mailbox service. Such mailboxes

can be viewed either as being owned by the creating process, in which case they

terminate with the process, or as being owned by the OS, in which case an explicit

command will be required to destroy the mailbox.

Message Format

The format of the message depends on the objectives of the messaging facility and

whether the facility runs on a single computer or on a distributed system. For some

operating systems, designers have preferred short, fixed-length messages to minimize

processing and storage overhead. If a large amount of data is to be passed, the data can be

placed in a file and the message then simply references that file. A more flexible

approach is to allow variable-length messages. The message is divided into two parts: a

header, which contains information about the message, and a body, which contains the

actual contents of the message. The header may contain an identification of the source

and intended destination of the message, a length field, and a type field to discriminate

among various types of messages. There may also be additional control information, such

as a pointer field so that a linked list of messages can be created; a sequence number, to

keep track of the number and order of messages passed between source and destination

and a priority field.

Message Passing for Mutual Exclusion

Message passing can be used to enforce mutual exclusion among cooperating processes

accessing shared resources, due to blocking and nonblocking characteristics of receive

and send primitives, respectively. We can use indirect addressing (mailbox) to solve

critical section problem for n processes. A set of concurrent processes share a mailbox,

which can be used by all processes to send and receive. The code for mutual exclusion

for n processes is listed below:

/* program mutual_exclusion */

const int n = /* number of process */
void main()
 create mailbox (box);
 send (box, null);
void P(int i) {
 message msg;
 while (true) {
 receive (box, msg);
 ; /* critical section */
 send (box, msg);
 /* remainder */;
 }
}

The mailbox is initialized to contain a single message with null content. A process

wishing to enter its critical section first attempts to receive a message. If the mailbox is

empty, then the process is blocked. Once a process has acquired the message, it performs

its critical section and then places the message back into the mailbox. Thus, the message

functions as a token that is passed from process to process. The solution assumes that if

more than one process performs the receive operation concurrently, then, if there is a

message, it is delivered to only one process and the others are blocked, or if the message

queue is empty, all processes are blocked; when a message is available, only one blocked

process is activated and given the message.

Message Passing for Synchronization

Since receive() primitive has blocking characteristics, send() and receive() primitives can

easily be used for synchronization problems. We describe producer-consumer problem

with bounded buffer using indirect message passing primitives. In this case, send and

receive() primitives are used to pass data, and signals. Two mailboxes mayconsume and

mayproduce are used. Initially, the mailbox mayproduce is filled with a number of null

messages equal to the capacity of the buffer. Initialization of shared variables and

mailboxes is listed bellow:

const int
capacity = /* buffering capacity */ ;
null = /* empty message */ ;
int i;
void main() {

create_mailbox (mayproduce);
create_mailbox (mayconsume);
for (int i = 1; i<= capacity; i++)

send (mayproduce, null);
}

As the producer generates data, it is sent as a message to the mailbox mayconsume. The

code of producer process is listed below:

void producer() {
 message pmsg;
 while (true) {
 receive (mayproduce, pmsg);
 pmsg = produce();
 send (mayconsume, pmsg);
 }
}

As long as there is at least one message in that mailbox, the consumer can consume. The

code of consumer process is listed bellow:

void consumer() {
 message cmsg;
 while (true) {
 receive (mayconsume,cmsg);
 consume (cmsg);
 send (mayproduce,null);
 }
}

Here mayconsume serves as the buffer; the data in the buffer are organized as a queue of

messages. The number of messages in mayproduce shrinks with each production and

grows with each consumption.

Indirect message passing approach is quite flexible and can be used for classical

synchronization problems. Here we describe reader-writer problem with reader’s priority.

Solution of reader-writer problem with reader’s priority using semaphores is described in

semaphores-Reader-Writer lecture notes. Here we will use the same solution and relate

the similarities between operations on semaphores and send and receive primitives of

indirect message passing. There are similarities between receive(msg) primitive and

wait(x) operation of semaphore, both block the process on a condition. Likewise,

send(msg) and signal(x) operation of semaphore are similar.

We create two mailboxes rwsyn and mutex and initialized them by sending a null msg to

both of these mailboxes and a variable read_count is initialized to 0.

const int
null = /* empty message */ ;
int read-count = 0;
create_mailbox (mutex); send (mutex, null);
create_mailbox (rwsyn); send (rwsyn, null);

The code for the reader is listed below:

Reader()
message msg, wmsg;
Receive (mutex, msg);
read_count++;
if (read_count == 1)
 receive (rwsyn, wmsg);
send(mutex, msg);
<Reader Unit>;
Receive (mutex, msg);
read_count--;
if (read_count==0)
 send((rwsyn, wmsg);
send(mutex, msg);

The code for the writer process is listed below:
 Writer()

message wmsg;
receive (rwsyn, wmsg);
 <Write Unit>;
send (rwsyn, wmsg);

The mutex mailbox (initialized to one null msg) is used to exclusively update variable

read_count. The read_count variable keeps track of how many processes are currently

reading the data. The mailbox rwsyn is common to both reader and writer processes. The

mailbox rwsyn is to ensure exclusive writing function by the writers. It is also used by the

first or last reader that enters or exits the critical section (reading data). When first reader

comes, it will receive msg from mutex mailbox (thus emptying the mailbox), increment

the read_count (set it ‘1’) and will receive wmsg from rwsyn mailbox (thus emptying the

mailbox) and after that send msg to mutex mailbox (now mutex mailbox has again one

null msg) and start reading. Now another reader comes, it will first receive msg from

from mutex mailbox (thus emptying the mailbox), increment the read_count (set it ’2’).

Now the values of read_count is ‘2’, so it will invoke receive, rather it will send a msg to

mutex mailbox and start reading. So far multiple readers can read. Now we assume a

writer comes, writer will invoke receive on rwsyn mailbox, and will be blocked, since

rwsyn mailbox is empty. When the last reader will leave, it sends a wmsg to rwsyn

mailbox and with the availability of a message in the mailbox, writer process will be

unblocked and receive wmsg and start writing. With completion of the receive operation

on rwsyn mailbox, the mailbox is again empty, so another writer will not be able to

perform write operation and is blocked on rwsyn mailbox. You can explore different

sequences of reader and writer processes to verify that solution of reader-writer problem

with reader’s priority using receive and send primitives works.

Carefully examine solution of reader-writer problem with reader’s priority using

semaphores and this solution. You can easily identify how wait and signal operations in

the solution of classical problems using semaphores can be replaced by send and receive

primitives of indirect message passing.

