Inter Process Communication
Message Passing

Cooperating processes interact with one another, and a concurrent execution environment
provides synchronization and communication facilities. Processes need to be
synchronized to enforce mutual exclusion; cooperating processes may need to exchange
information. One approach to providing both of these functions is message passing.
Message-passing systems come in many forms. Here we describe a general introduction
and discuss features typically found in such systems. The actual function of message
passing is normally provided in the form of a pair of primitives and is the minimum set of
operations needed for processes to engage in message passing:

send (destination, message)

receive (source, message)
A link is established automatically between every pair of processes that want to
communicate. The processes need to know only each other’s identity to communicate. A
process sends information in the form of a message to another process designated by a
destination. A process receives information by executing the receive primitive, indicating
the source and the message.

Message Passing and Synchronization

The communication of a message between two processes implies some level of
synchronization between the two: The receiver cannot receive a message until it has been
sent by another process. In addition, we need to specify what happens to a process after it
issues a send or receive primitive. When a send primitive is executed in a process, there
are two possibilities: Either the sending process is blocked until the message is received,
or it is not blocked. Similarly, when a process issues a receive primitive, there are two
possibilities, in the first case if a message has previously been sent, the message is
received and execution continues. In the second case if there is no waiting message, then
either (a) the process is blocked until a message arrives, or (b) the process continues to
execute, abandoning the attempt to receive.

Thus, both the sender and receiver can be blocking or nonblocking. Three combinations
are common, although any particular system will usually have only one or two
combinations implemented:

e Blocking send, blocking receive: Both the sender and receiver are blocked until the
message is delivered; this is sometimes referred to as a rendezvous. This
combination allows for tight synchronization between processes.

e Nonblocking send, blocking receive: Although the sender may continue on, the
receiver is blocked until the requested message arrives. This is probably the most
useful combination. It allows a process to send one or more messages to a variety
of destinations as quickly as possible. A process that must receive a message
before it can do useful work needs to be blocked until such a message arrives. An
example is a server process that exists to provide a service or resource to other
processes.



e Nonblocking send, nonblocking receive: Neither party is required to wait.

The nonblocking send is more natural for many concurrent programming tasks. For
example, if it is used to request an output operation, such as printing, it allows the
requesting process to issue the request in the form of a message and then carry on.

For the receive primitive, the blocking version appears to be more natural for many
concurrent programming tasks. Generally, a process that requests a message will need the
expected information before proceeding.

Naming (Addressing) in Message Passing
Processes that want to communicate must have a way to refer to each other. It is
necessary to specify in the send primitive which process is to receive the message.
Similarly, most implementations allow a receiving process to indicate the source of a
message to be received. Specifying processes in send and receive primitives fall into two
categories: direct addressing and indirect addressing.

With direct addressing, each process that wants to communicate must explicitly
name the recipient or sender of the communication. In this scheme, the send() and
receive() primitives are defined as:

e send(X, message); Send a message to process X
o receive(Y, message); Receive a message from process Y

Here the send and receive primitives includes a specific identifier of the destination and
source process, respectively and show a symmetry in addressing/naming. In this case a
process explicitly designates a sending process. Thus, the process must know ahead of
time from which process a message is expected, which is effective for cooperating
concurrent processes. In situations, it is impossible to specify the anticipated source
process. An example is a printer server process, which will accept a print request message
from any other process. For such applications, asymmetric approach of addressing is
employed and only the sender names the recipient; the recipient is not required to name
the sender. In this scheme, the send() and receive() primitives are defined as follows:

e send(X, message); Send a message to process X.
e receive(id, message); Receive a message from any process.

In this case, the source parameter of the receive primitive possesses a value returned is
the name of the process with which communication has taken place.

In indirect addressing, messages are not sent directly from sender to receiver but rather
are sent to a shared data structure consisting of queues that can temporarily hold
messages. Such queues are generally referred to as mailboxes. Thus, for two processes to
communicate, one process sends a message to the appropriate mailbox and the other
process picks up the message from the mailbox. By decoupling the sender and receiver, it



allows greater flexibility in the use of messages. A process can communicate with
another process via a number of different mailboxes, but two processes can communicate
only if they have a shared mailbox. The send() and receive() primitives are defined as
follows:

e send(M, message); Send a message to mailbox M.

o receive(M, message); Receive a message from mailbox M.

The relationship between senders and receivers can be one to one, many to one, one to
many, or many to many. A one-to-one relationship allows a private communications link
to be set up between two processes. This insulates their interaction from erroneous
interference from other processes. A many-to-one relationship is useful for client/server
interaction; one process provides service to a number of other processes. In this case, the
mailbox is often referred to as a port. A one-to-many relationship allows for one sender
and multiple receivers; it is useful for applications where a message or some information
IS to be broadcast to a set of processes. A many-to-many relationship allows multiple
server processes to provide concurrent service to multiple clients.

The association of processes to mailboxes can be either static or dynamic. Ports are often
statically associated with a particular process; that is, the port is created and assigned to
the process permanently. Similarly, a one-to-one relationship is typically defined
statically and permanently. When there are many senders, the association of a sender to a
mailbox may occur dynamically. Primitives such as connect and disconnect may be used
for this purpose.

Mailbox has owner and users. In the case of a port, it is typically owned by and created
by the receiving process. Thus, when the process is destroyed, the port is also destroyed.
For the general mailbox case, the OS may offer a create-mailbox service. Such mailboxes
can be viewed either as being owned by the creating process, in which case they
terminate with the process, or as being owned by the OS, in which case an explicit
command will be required to destroy the mailbox.

Message Format

The format of the message depends on the objectives of the messaging facility and
whether the facility runs on a single computer or on a distributed system. For some
operating systems, designers have preferred short, fixed-length messages to minimize
processing and storage overhead. If a large amount of data is to be passed, the data can be
placed in a file and the message then simply references that file. A more flexible
approach is to allow variable-length messages. The message is divided into two parts: a
header, which contains information about the message, and a body, which contains the
actual contents of the message. The header may contain an identification of the source
and intended destination of the message, a length field, and a type field to discriminate
among various types of messages. There may also be additional control information, such
as a pointer field so that a linked list of messages can be created; a sequence number, to
keep track of the number and order of messages passed between source and destination
and a priority field.



Message Passing for Mutual Exclusion

Message passing can be used to enforce mutual exclusion among cooperating processes
accessing shared resources, due to blocking and nonblocking characteristics of receive
and send primitives, respectively. We can use indirect addressing (mailbox) to solve
critical section problem for n processes. A set of concurrent processes share a mailbox,
which can be used by all processes to send and receive. The code for mutual exclusion
for n processes is listed below:

/* program mutual_exclusion */

constintn = /* number of process */
void main()
create mailbox (box);
send (box, null);
void P(int i) {
message msg;
while (true) {
receive (box, msg);
; [* critical section */
send (box, msg);
/* remainder */;
}
}

The mailbox is initialized to contain a single message with null content. A process
wishing to enter its critical section first attempts to receive a message. If the mailbox is
empty, then the process is blocked. Once a process has acquired the message, it performs
its critical section and then places the message back into the mailbox. Thus, the message
functions as a token that is passed from process to process. The solution assumes that if
more than one process performs the receive operation concurrently, then, if there is a
message, it is delivered to only one process and the others are blocked, or if the message
queue is empty, all processes are blocked; when a message is available, only one blocked
process is activated and given the message.

Message Passing for Synchronization

Since receive() primitive has blocking characteristics, send() and receive() primitives can
easily be used for synchronization problems. We describe producer-consumer problem
with bounded buffer using indirect message passing primitives. In this case, send and
receive() primitives are used to pass data, and signals. Two mailboxes mayconsume and
mayproduce are used. Initially, the mailbox mayproduce is filled with a number of null
messages equal to the capacity of the buffer. Initialization of shared variables and
mailboxes is listed bellow:



const int

capacity = /* buffering capacity */;

null= /* empty message */;

inti;

void main() {
create_mailbox (mayproduce);
create_mailbox (mayconsume);
for (int i = 1; i<= capacity; i++)

send (mayproduce, null);

}

As the producer generates data, it is sent as a message to the mailbox mayconsume. The
code of producer process is listed below:

void producer() {
message pmsg;
while (true) {
receive (mayproduce, pmsg);
pmsg = produce();
send (mayconsume, pmsg);
}
}

As long as there is at least one message in that mailbox, the consumer can consume. The
code of consumer process is listed bellow:

void consumer() {
message cmsg;
while (true) {
receive (mayconsume,cmsg);
consume (cmsg);
send (mayproduce,null);
}
}
Here mayconsume serves as the buffer; the data in the buffer are organized as a queue of

messages. The number of messages in mayproduce shrinks with each production and
grows with each consumption.

Indirect message passing approach is quite flexible and can be used for classical
synchronization problems. Here we describe reader-writer problem with reader’s priority.
Solution of reader-writer problem with reader’s priority using semaphores is described in
semaphores-Reader-Writer lecture notes. Here we will use the same solution and relate
the similarities between operations on semaphores and send and receive primitives of
indirect message passing. There are similarities between receive(msg) primitive and
wait(x) operation of semaphore, both block the process on a condition. Likewise,
send(msg) and signal(x) operation of semaphore are similar.



We create two mailboxes rwsyn and mutex and initialized them by sending a null msg to
both of these mailboxes and a variable read_count is initialized to 0.

const int

null= /* empty message */;

int read-count = 0;

create_mailbox (mutex); send (mutex, null);
create_mailbox (rwsyn); send (rwsyn, null);

The code for the reader is listed below:

Reader()

message msg, wmsg;

Receive (mutex, msg);

read_count++;

if (read_count==1)

receive (rwsyn, wmsg);

send(mutex, msg);

<Reader Unit>;

Receive (mutex, msg);

read_count--;

if (read_count==0)
send((rwsyn, wmsg);

send(mutex, msg);

The code for the writer process is listed below:
Writer()

message wmsg;

receive (rwsyn, wmsg);
<Write Unit>;

send (rwsyn, wmsg);

The mutex mailbox (initialized to one null msg) is used to exclusively update variable
read_count. The read_count variable keeps track of how many processes are currently
reading the data. The mailbox rwsyn is common to both reader and writer processes. The
mailbox rwsyn is to ensure exclusive writing function by the writers. It is also used by the
first or last reader that enters or exits the critical section (reading data). When first reader
comes, it will receive msg from mutex mailbox (thus emptying the mailbox), increment
the read count (set it 1) and will receive wmsg from rwsyn mailbox (thus emptying the
mailbox) and after that send msg to mutex mailbox (now mutex mailbox has again one
null msg) and start reading. Now another reader comes, it will first receive msg from
from mutex mailbox (thus emptying the mailbox), increment the read count (set it ’2”).
Now the values of read count is ‘2, so it will invoke receive, rather it will send a msg to
mutex mailbox and start reading. So far multiple readers can read. Now we assume a
writer comes, writer will invoke receive on rwsyn mailbox, and will be blocked, since



rwsyn mailbox is empty. When the last reader will leave, it sends a wmsg to rwsyn
mailbox and with the availability of a message in the mailbox, writer process will be
unblocked and receive wmsg and start writing. With completion of the receive operation
on rwsyn mailbox, the mailbox is again empty, so another writer will not be able to
perform write operation and is blocked on rwsyn mailbox. You can explore different
sequences of reader and writer processes to verify that solution of reader-writer problem
with reader’s priority using receive and send primitives works.

Carefully examine solution of reader-writer problem with reader’s priority using
semaphores and this solution. You can easily identify how wait and signal operations in
the solution of classical problems using semaphores can be replaced by send and receive
primitives of indirect message passing.



