Memory Management

Main Memory is a volatile array of words or bytes, each with its own unique address.
Memory is shared by the CPU and /O devices. The main purpose of a computer system is
to execute programs. These programs, together with the data they access, must be at least
partially in main memory during execution. Program must be brought into memory and
placed within a process for it to be executed. The CPU fetches instructions from memory
according to the value of the Program Counter (PC). These instructions may cause
additional loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruction from
memory. The instruction is then decoded and may cause operands to be fetched from
memory. After the instruction has been executed on the operands, results may be stored
back in memory. The memory unit sees only a stream of memory addresses; it does not
know how they are generated (by the instruction counter, indexing, indirection, literal
addresses, and so on) or what they are for (instructions or data). You may already know
how a program generates a memory address and role of Memory Address Register and
Memory Buffer/Data Register. Here we will explain how symbolic memory addresses are
mapped to actual physical addresses, and how and when logical addresses are translated
into physical addresses. Main memory and the registers built into the processor itself are the
only general-purpose storage that the CPU can access directly.

The part of Operating System which manages memory activities is Memory Management
Module.

e It Keeps track of which parts of memory are currently being used and by whom.

e Decides which processes to load when memory space becomes available.

e Allocate and de-allocate memory space to processes as required.

Memory Management module is responsible for relocation, protection, sharing, logical
organization, and physical organization of memory. For all these activities different
approaches and algorithms are used. Each approach has its own advantages and
disadvantages. Selection of a memory-management method for a specific system depends
on many factors, especially on the hardware design of the system.

In a single programming system, main memory is divided into two parts: one part for

the operating system and other part for the program currently being executed. Normally
operating system resides at lower addresses (0 — N-1) and the program resides from N
address (memory location). In a multiprogramming system, the “user” part of memory must
be further subdivided to accommodate multiple processes to have a separate address space
for each process. For different processes separate memory spaces, must be protected to
ensure that the process can access only their legal addresses. This protection can be
provided by using two registers, usually a base and a limit register.

The base register holds the smallest legal physical memory address; the limit register
specifies the size/range of program. Protection of memory space is accomplished by having
the CPU hardware compare every address generated in user mode with the registers. Any
attempt by a program executing in user mode to access operating-system memory or other
users’ memory results in a trap to the operating system, which treats the attempt as a fatal



error. To make sure that programs are not accessing operating system area, in most of the
computer systems operating system is loaded at lower address.
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Address Binding and Address Mapping/Translation

Usually, a program resides on a disk as a binary executable file. To be executed,

the program must be brought into memory and placed within a process. As the process

IS executed, it accesses instructions and data from memory. Eventually, the process
terminates, and its memory space is declared available. Most systems allow a user process
to reside in any part of the physical memory available at load time.

In most cases, a user program goes through several steps—some of which may be optional
before being executed. Addresses may be represented in different ways during these steps.
Addresses in the source program are generally symbolic (such as the variable count). A
compiler typically binds these symbolic addresses to relocatable addresses (such as

“16 bytes from the beginning of this module™). The linkage editor or loader in turn binds
the relocatable addresses to absolute addresses (such as 58016). Each binding is a mapping
from one address space to another. The binding of instructions and data to memory
addresses can be done at any step along the way:

Compile time: If it is known at compile time where the process will reside in memory, then
absolute code can be generated. For example, if it is known that a user process will reside
starting at location N, then the generated compiler code will start at N and extend up from
there. The MS-DOS .COM-format programs are bound at compile time. Only disadvantage
is that if, at some later time, the starting location changes, then it will be necessary to
recompile this code.

Load time: At compile time it is not known where the process will reside in memory, then
the compiler must generate relocatable code. Final binding is delayed until load time. If the
starting address changes, we need only to reload the user code to incorporate this changed
value.

Execution time: If the process can be moved during its execution from one memory
segment to another, then binding must be delayed until run time. Special hardware must be
available for this scheme to work. Most general-purpose operating systems use this method.



Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical address, whereas an
address seen by the memory unit (loaded into the Memory-Address Register of the
memory) is commonly referred to as a physical address. The compile-time and load-time
address-binding methods generate identical logical and physical addresses. However, the
execution-time address binding scheme results in differing logical and physical addresses.
In this situation, at sometimes logical address is referred as a virtual address. The set of all
logical addresses generated by a program is a logical address space. The set of all physical
addresses corresponding to these logical addresses is a physical address space. The run-time
mapping from virtual to physical addresses is done by a hardware device called the Memory
Management Unit (MMU). There are different methods to accomplish such mapping (will
discuss later) and simplest mapping is a generalization of the base and limit register
scheme. The base register is now called a relocation register. The value in the relocation
register is added to every address generated by a user process at the time the address is sent
to memory. The user program never sees the real physical addresses. The user program
deals with logical addresses. The memory-mapping hardware converts logical addresses
into physical addresses. We now have two different types of addresses: logical addresses (in
the range 0 to max) and physical addresses (in the range B + 0 to B + max for a base value
B). The user program generates only logical addresses and thinks that the process runs in
locations 0 to max. However, these logical addresses must be mapped to physical addresses
before they are used.

Program Size, Address Range, Address Bits

Before we discuss, memory allocation schemes, better to clarify address space range, and
address bits required for a given and available size of memory. You may recall address bits
being used and passed to Memory Address Register to fetch a memory location. Memory
Size, Address Range, and Address Bits are related and using a simple manipulation you can
know one from the other. Following table explains the relationships.

Memory Size 2N Address bits Address Range

16B 24 4 0-(2*-1)
0-15

64B 26 6 0-(2°-1)
0-31

1KB 210 10 0-(219-1)
0-1023

64KB ? ? 0-(2°-1)

IMB 2% 20 0-—(2%°-1)

16MB ? ? ?

IGB 2% 30 0—(2%0-1)

64GB ? ? ?

Table-1: Memory size, address bits and address range.

For memory of 16 bytes, which is 24, we require 4 bits to address 0 — 15 bytes. Similarly for
memory of 1 KB, which is 22°, we require 10 bits to address 0 — 1023 bytes.



Memory Addressing

Address bits being represented and manipulated internally in binary form, we can for
understanding and simple manipulation can use Hexadecimal representation for addresses.
We can use simple table for 0 — 15 locations represented in Decimal, Binary and
Hexadecimal format.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table-2: Decimal number 0 -15 in binary and Hexadecimal

By using the Table-1 and Table-2 we can easily convert a memory address into
Hexadecimal format by making groups of 4 bits as explained below.

For a memory of 1KB, which is 21°, we require 10 bits to address 0 — 1023 bytes.

Maximum memory location is 1023, where all bits are <1° 1111111111’

Manually manipulating and converting this string of binary values is not easy, and there is a
chance of missing bit values. We can easily convert this binary string into Hexadecimal
which is more readable. We start from least significant bits and make groups of 4 bits as
listed below.

‘111111111’ => 11- 1111-1111
NN
There may not be enough bits to make the last group of 4 bits, in this case we can add ‘0’ as
most significant bits to make a group of 4 bits as listed below.

‘1111111111° - 0011- 1111-1111
v Y
These groups of 4 binary values can easily be converted into Hexadecimal values with the
help of Table-2 (which you must have remembered by now to manually manipulate
memory address). We can simply write hexadecimal values, which will be memory address
in Hexadecimal. For memory location ‘1023’ address in Hexadecimal will be ‘3FF’.



We will be using this address manipulation for different memory allocation schemes to
compute physical address from logical address. So better to clearly understand this process
and do some exercises for address computation.

Let us compute memory address for memory location ‘512°. In computer, memory
addressing always start from ‘0’. Memory bits required to address ‘512’ ?

Have a look at Table-1, for memory size of ‘512’ bytes, we need 9 bits, and address range
of that memory will be 0 — 511(means all 9 bits on -°111111111° - 1FF’). We have to
compute memory address of location ‘512°, which is one location more than location ‘511°.
We can compute it by adding ‘1’ to memory address (’111111111°) which is 1000000000’
in binary and when making groups of 4 for Hexadecimal it is ‘200’

Carefully look the pattern of binary string, when we add one binary value, where all least
significant bits are “1°, and most significant bit is ‘0’, then most significant bit becomes ‘1’
and least significant bits become ‘0’

‘0011’ add “1’ and it becomes 0100’

Similarly for Hexadecimal where maximum value is ‘F’, if add ‘1’ when least significant
values are ‘F’, then after addition, most significant value is added by ‘1’ and all least
significant values become ‘0’

‘1FF’ add “1” and it becomes 200’

You can easily compute memory address in Binary and Hexadecimal by factorizing the
value to nearest power of 2, and then by adding or subtracting small number in binary or
Hexadecimal form.

Let us do a simple exercise, to compute memory address and range for 48B.
Not a power of 2. (However 48 = 32 + 16).

32> 253 5bits > 0-25-1> 0’ - 11111’ > <00’ - ‘1F* (0 - 31)
16> 2* D 4bits > 0-24-1> 0’ -1111> > 0’-‘F* (0- 15)

To address 64bytes, we need 6 bits (all “1” for maximum memory location).

To address 48™ byte, we will need 6 bits, however not all bits will be <1°.

We can compute binary addresses by performing addition on binary or Hexadecimal values
of addresses. We already computed, 31% byte address as ‘11111” and ‘1F in binary and
hexadecimal respectively. By adding ‘1’ location we can have address of 32" location
which is 100000’ and 20’ in binary and hexadecimal respectively. To compute address of
48" location, we add 16 to 32 for decimal computation. Similarly, we can add binary and
hexadecimal equivalent of 16 to binary and hexadecimal equivalent of 32.

100000’ + <10000° -> “110000’ (Binary)
‘200 + ‘10’ - ‘30’ (hexadecimal)

Similarly, we can compute address of 40" location by adding 8 to 32 for decimal
computation and by adding binary and hexadecimal equivalent of 8 to binary and
hexadecimal equivalent of 32.



100000’ + <1000 -> <101000’ (Binary)
20° + ‘08’ -> 28’ (hexadecimal)

You can verify by factorizing and adding values to compute address for memory location
56™ byte and 6KB.
6KB not a power of 2. (However 6KB = 4KB + 2KB)

4KB = 212 12 bits = 0-212-1-¢1111111111112° - ‘FFP
2KB > 211 > 11 bits = 0-21-1-> 111111111112 > 7FP

To address 8KB, we need 13 bits (all 1” for maximum memory location).

To compute maximum memory location of 6KB, we can add maximum value of 2KB to
maximum value of 4KB. Since memory address is starting from ‘0’ location we have to add
‘1’ while adding additional addresses to get the base address of the next location.

‘FFF’> + ‘1’ +‘7TFF° = ‘17FF
Compute address of 6KB in binary format

Address Translation and Memory Protection

Before we discuss memory allocation schemes, we explain memory allocation, memory
protection, and logical to physical address translation, by using a simple memory size of
64KB, where lower 4KB is being used by the operating system. Memory is divided in two
partitions. 4KB (0 to 4KB-1) for operating system and 60KB (4KB to 64KB-1) for user
processes as shown in Figure-2.
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Figure-2: Physical memory addresses.

Address values are in Hexadecimal. We can use Base and Limit Registers to compute
Physical address for a user process and can also see how operating system can protect itself
and restricts a user process. We can use memory system in Figure-2 to place a user process
of memory size 16KB. After placement of that program the memory system of Figure-2
will look like as shown in Figure-3.
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Figure-3: Physical address space of OS and user process.

From Figure-3 we can see that operating system can protect itself by comparing logical
address of the process with the base register, it should be greater than or equal to base
register value (in this case 1000). This basically is done at address translation time as shown
in Figure-1. In the example of Figure-2, we have a process of memory size 16KB. We can
easily convert a logical address less than 16KB by using base and limit register as shown in
Figure-1. If we have a logical address ‘2000° which is 8KB location, it will be converted
into physical address by adding this address to Base value (‘1000° + ‘2000° = <3000’). If the
process generates a logical address beyond its limit of 16KB, a trap will be generated as
depicted in Figure-1.

Single Partition: Contiguous Memory Allocation

First, we discuss simple two partitions (sometimes called single partition, since a single
program is memory resident at any given time) contiguous memory allocation, where
memory is divided into two parts, one for the operating system and other for user processes.
This allocation scheme is very simple, operating system keeps track of the memory status,
free or allocated. This can be done by using a flag or register, along with the memory size
available for user processes. Placement is simple, if memory required by a program is
within limits of available memory and is free, memory is allocated, and base and limit
registers are updated with the information. When the process is completed, memory status
as of ‘free’ is maintained and memory is allocated to the next program in queue. At any
given time only one user process is memory resident and processes having a memory
requirement less than or equal to available memory for user processes can be allocated
memory. This was first memory management scheme used in batch operating system.

Resource’s utilization in this scheme is not good. At any given time only one process is
memory resident, and a program with small memory requirement is allocated all the
memory available. It means for all those programs with small memory requirements
memory is underutilized. For a compute bound process, 10 devices are underutilized during
the lifecycle of that process. For an 10 bound process, CPU is underutilized during the
lifecycle of that process. No special hardware required, memory is being protected by using
base and limit registers along with address translation.



Multiple Partitions: Contiguous Memory Allocation

In single partition, we noticed that resources are underutilized. To overcome resources
underutilization, multiple partitions are created to place more than one programs in memory
to improve resources utilization.

Fixed (Static) Partitions

In this scheme, memory is divided into fixed size partitions (all partitions are of the same
size or different partitions of different sizes). It is fixed in a sense that partitions are created
at operating system generation time. It means once created partitions (hnumber and size)
cannot be changed, so also called static. Operating system keeps track of status of all
partitions (Free/Allocated, Size, and Base Address). Operating system can maintain a list of
partitions (base address, size, status: Free/Allocated). When all the partitions are of the
same size, placement scheme is simple. Only restriction is that the program to be placed in
memory must have memory requirement less than or equal to partitions size. Memory
management module will search the list to find the first free partition, allocate it, update the
list with partition status being changed to Allocated, and update base and limit register
information in the Process Control Block. By using memory of 64KB of Figure-4, where
operating system uses 4KB, rest of the 60KB is divided into equal size partitions of 4KB
each. Memory partitions along with base addresses of a few partitions is shown in Figure-4.
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Figure 4: Fixed Partitions of 4KB each

Assume at a given time, free partitions are (P4, P8, and P12). The memory management
module will place a program (Pa, memory requirement 2KB) by searching the list and
finding first free partition, which in this case is P4. So, program Pa is allocated memory of
partition P4 (Base address: 4000, and Limit: 2KB). When Pa is allocated CPU, Base and
Limit Registers values will be updated at context switch time and process status from
Ready to Running state. Pa’s logical address will be generated by using base and limit



registers. If Pa’s logical address generated at any given time by CPU is 1KB (0400)
location, it will be translated into physical address (4000 + 0400 = 4400).

Though fixed partitions are of 4KB size, Pa required 2KB, a whole partition of 4KB is
allocated. Unutilized 2KB created a memory fragment which will never be used during the
lifecycle of Pa. The unutilized memory is internal fragmentation, because it creates a
fragment of memory internal to fixed partition. As for CPU and 10 utilization, at any given
time more than one programs (as per number of partitions) are memory resident, it has
better utilization of CPU and 10 devices due to multiprogramming. Fixed partitions
memory allocation was used in early-stage multiprogramming operating systems. Fixed
partitions of equal size restrict program size to be a fixed size. Different application
programs are of different sizes, so fixed partitions memory allocation scheme with different
partitions sizes was implemented in different multiprogramming operating systems.

In this scheme, memory is divided into different size partitions. By using memory of 64KB
of Figure-2, where operating system uses 4KB, rest of the 60KB is divided into different
size partitions (2 partitions P1-P2 of 4KB each, 2 partitions P3-P4 of 8KB each, and 3
partitions P5-P7 of 12KB each, Memory partitions along with base addresses of a few
partitions is shown in Figure-5.
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Figure-5: Fixed Partitions of different sizes

When fixed partitions are of different size, placement strategy must be designed so that to
allocate a partition which will have minimum internal fragmentation. Two schemes were
explored, first to have a single queue of programs for all partitions, another scheme is to
have a separate queue for each partition size, where programs of almost same size will
compete. Both schemes have merits and demerit. Placement schemes which were used in
different multiprogramming systems are First Fit or Best Fit approach. In first fit, memory
management module searches first free partition, which is large enough to accommodate the
program. In this scheme free partitions list is maintained on base addresses. In best fit,
management module searches smallest free partition, which is large enough to



accommodate the program. In this scheme free partitions list is maintained on partition sizes
(sorted in ascending order). First fit is fast, however has large internal fragmentation,
whereas best fit has sorting overheads, it has smallest internal fragmentation.

We can use Figure-5 example, to explain first fit and best fit approach allocation. Program
to be placed is Pb with memory requirements of 7KB. Assume at a given time, free
partitions are (P3:8KB, P5:12KB, and P7:12KB). For first fit, free partitions list is managed
on higher addresses as shown in Table-3.

Base Address | Partition | Size
D000 P7 12KB
7000 P5 12KB
3000 P3 8KB

Table-3: Free partitions list.

In first fit approach list/table is searched from the top of the list, and first free partition
which is large enough to accommodate the program Pb is allocated. In this case P7 is the
partition, which is allocated to program Pb, which required 7KB with 5KB of internal
fragmentation.

For best fit, free partitions list is sorted in ascending order on free partitions size as shown
in Table-4.

Size Partition | Base Address
8KB P3 3000
12KB P5 7000
12KB P7 D000

Table-4: Free partitions list sorted by size.

In best fit approach list/table is searched from the top of the list, and first free partition
which is large enough to accommodate the program Pb is allocated. In this case P3 is the
partition, which is allocated to program Pb(7KB) with internal fragmentation of 1KB.

In fixed partitions scheme of variable sizes, program size restriction is that of largest
partition. Program size varies and a program larger than largest partition cannot be placed in
memory. Main drawback of this scheme is internal fragmentation, which runs into poor
utilization of memory. To overcome this internal fragmentation, variable partitions scheme
was designed.

Variable (Dynamic) Partitions

Initially one large partition of memory, and memory is allocated as per programs memory
requirements. After allocation and de-allocation of memory to different programs, there will
be variable number of partitions of variable sizes. In case of fixed partitions, the list size of
partitions is fixed, whereas in variable partitions, the list size is dynamic, initially one free
partition, one program allocated, list size is two (one partition allocated, one free) and as
programs are allocated memory, partitions number dynamically increased. As for
deallocation after programs completion, adjacent free partitions are merged to create a large



partition. After deallocation of all partitions, there will be one large partition as of at
allocation starting time. Since at any given time, number of partitions and their sizes will be
variable, different allocation schemes are implemented in different operating systems. In
variable partitions approach, memory deallocation is not that simple since adjacent free
partitions must be merged to create a large free partition.

Following Figures show status of memory partitions during different times.

Initially one free partition.
oS

After allocation of P1 to P6 partitions of different sizes as per memory requirements of
different programs, and one free partition.

ocp P1 P2 | 2 p3  pap5s pre HEEW
After P4, P5, and P1, P2 are deallocated.
0S | P3 P6

After P6 is deallocated.

0S | P3
Now when P3 is deallocated, adjacent free partitions are merged, and we will have one free
partition just like when we started this example.

0S

Placement Strategies/Approaches

Just like in fixed partitions of different sizes, we describe first fit and best fit approach for
memory allocation. In variable partitions, multiple placement approaches were explored and
implemented. Commonly used were first fit and best fit. Variations of first fit called next fit
and of best fit called next fit were explored.

First fit: Allocate first partition that is big enough to accommodate the program, starting
from the top of the list of free partitions.

Best fit: Allocate smallest size partition that is big enough to accommodate the program;
must search entire list, unless list of free partitions is ordered by size in ascending order.
Produces the smallest leftover partition, which may not be used, thus creating external
fragmentation.

Next fit: A variation of first fit. Allocate first partition that is big enough to accommodate
the program, starting from where the last allocation was made.

Worst fit: A variation of first fit. Allocate the largest size partition; must also search entire
list, unless list of free partitions is ordered by size in descending order. Produces the large
size leftover partition which may be large enough to accommodate a program.

We can explore working of these approaches by using an example, where memory is
256MB, OS uses 40MB, remaining 216MB is used to allocate and deallocate following job
sequence. J1(60MB), J2(16MB), J3(30MB), J4(40MB), J5(70MB), J1 terminated, J4
terminated, J6(40MB), J7(50MB).



Initial state of memor
0S

After allocation of memory to J1- J5.

0OS J1 J2 J3 J4 J5
40MB 60MB 16MB 30MB 40MB 70MB
After termination of J1 and J4.
0OS J2 J3 J5
40MB 16MB 30MB 70MB

First Fit: In this approach, free memory partitions list is searched and first free partition
which is large enough is allocated. List of free partitions is printed below.

Base Address Size
XXXX 60MB
YYYY 40MB

First free partition is of 60MB, so 40MB is allocated to J6, and another partition of 20MB is
created and new list of free partitions is:

Base Address Size
XXYY 20MB
YYYY 40MB

After allocation of memory to P6(40MB)

oS J6 J2 J J5
40MB 40MB 16MB 30MB 7/0MB

Now J7(50MB) cannot be accommodated, though total free memory is 60MB, however
fragmented in two partitions of 20MB and 40MB.

In case of our example being discussed, for all schemes, memory partitions status is the
same as of after termination ofJ1 and J4. So, for all other schemes we will describe
allocation of J6 and J7.

J2 NK J5
16MB 30MB /0MB

(O]
40MB
We can apply Best Fit approach to allocate memory to J6(40MB). In this approach free
memory partitions list (sorted in ascending order of partition size) is searched and first free
partition which is large enough is allocated. List of free partitions is printed below.



Base Address Size
YYYY 40MB
XXXX 60MB

First free partition is of 40MB, so 40MB is allocated to P6, and new list of free partitions is:
Base Address Size
XXXX 60MB

After allocation of memory to J6(40MB) memory status is printed below.
0S J2 J3 J6

40MB 16MB 30MB 40MB

Now we see placement of J7(50MB). Using Best fit approach, it is allocated 50MB from
the 60MB partition and after allocation memory status will be:

OS J7 J2 J3 J6
40MB S0MB 16MB 30MB 40MB

You can see that for a given memory size, for a specific job sequence using First fit, all jobs
cannot be allocated memory due to fragmentation. While using Best fit, all jobs are
allocated memory.

Now we describe Next fit and Worst fit, which are variants of First fit and Best fit
respectively.

In Next fit, free partitions list is not searched from the top of the list, rather a pointer is
maintained to the address where the last allocated is made. The list is searched from that
pointer in a circular manner (when end of list is reached, search continues from the top of
the list to the pointer location. Last allocation was for J5 (at ZZY'Y location). List of free
partitions after last allocation is printed below, and pointer points to ZZY'Y location.

Base Address Size
XXXX 60MB
YYYY 40MB

First free partition is of 60MB, so 40MB is allocated to J6, and another partition of 20MB is
created and new list of free partitions is printed below, where pointer point to location
XXYY.

Base Address Size
20MB
YYYY 40MB

After allocation of memory to J6(40MB).
oS Ny J3
40MB 16MB 30MB




Now J7(50MB) cannot be accommodated, though total free memory is 60MB, however
fragmented in two partitions of 20MB and 40MB.

In worst fit, free memory partitions list (sorted in descending order of partition size) is
searched and first free partition which is large enough is allocated. List of free partitions is
printed below.

Base Address Size
XXXX 60MB
YYYY 40MB

First free partition is of 60MB, so 40MB is allocated to J6, and another partition of 20MB is
created and new list of free partitions is printed below.

Base Address Size
YYYY 40MB
XXYY 20MB

Memory status after allocation of memory to P6(40MB).
OS Ny J3
40MB 16MB 30MB

Now J7(50MB) cannot be accommodated, though total free memory is 60MB, however
fragmented in two partitions of 20MB and 40MB.

You can do following exercise to see working of First/Next fit and Best/Worst fit for the
job sequence with a user partitions memory of 256 MB.

Job Sequence: Jobl (140MB), Job2 (16MB), Job3(80MB),

Jobl terminate, Job3 terminate, Job4 (40MB), Job5 (128MB)

In variable partitions, memory is allocated as per process memory requirement. If the
partition selected for process placement is slightly larger than the memory required,
memory is allocated and for the remaining memory a partition of small fragment is created.
This small fragment is not part of any other allocated partition and is external to partitions.
In this scheme at any given time, there may be large number of external fragments of
memory, which can be used for program placement. Main drawback of variable partitions
approach is external fragmentation.

To summarize First/Next/Best/Worst fit working, following example is self-explanatory.
You can hide, right side column of memory partitions and try to allocate memory of 16 MB
using First/Next/Best/Worst fit approach.
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A fixed partitioning scheme limits the number of active processes and may use space
inefficiently if there is a poor match between available partition sizes and process sizes.

A variable partitioning scheme is more complex to maintain and includes the overhead of
compaction. An interesting compromise is the buddy system. In early operating systems the
approach was explored, under the assumption that most of the programs memory
requirement is in power of 2. If memory requirement is near to power of 2, then to create
multiple partitions of power of 2 is fast and addressing of these partitions is simple.

In a buddy system, memory blocks are available of size 2¥ bytes, L < K < U, where

2L = smallest size block that is allocated.

2Y = largest size block that is allocated; generally, 2V is the size of the entire memory
available for allocation.

Memory allocated using power-of-2 allocation; Satisfies requests in units sized as power of
2.

To begin, the entire space available for allocation is treated as a single block of size 2Y. If a
request of size s such that 2V < s <2Y is made, then the entire block is allocated.
Otherwise, the block is split into two equal buddies of size 291, If 292 < s <2Y-1 then the
request is allocated to one of the two buddies. This process is repeated until the smallest
block greater or equal to s is generated. Two buddies are coalesced whenever both of them
become unallocated.



Following figure illustrate, how left and right buddies are created incrementally, until the
required size partition is created. In this example available memory is of 256KB, and a
process’s memory requirement is 30KB (i.e. we need a partition of 32KB).

256 KB
128 KB 128 KB
By An
684 KB 64 KB
B By
a3z ke | [32 kB
< Cr

Working of buddy system memory allocation in partitions of power of 2 and merging of
buddies is illustrated in Figure-9. Initially available memory is 1MB and partitions are
created to place a memory request.

1-Mbyte block | IM |
Request 100K | A = 128K | 128K | 256K | 512K |
Request 240K [ A = 128K | 128K | B = 256K | 512K |
Request 64K [ A = 128K [c=64] 64K | B = 256K [ 512K |
Request 256K | A = 128K |- 6] 64K | B = 256K | D = 256K | 256K |
Release B | A = 128K [c=6k] 64K | 256K | D = 256K | 256K |
Release A | 128K |c=64] 64K | 256K | D = 256K | 256K |
Request 75K | E = 128K [c-64] 64K | 256K | D = 256K | 256K |
Release C | E= 128K | 128K | 256K | D = 256K | 256K |
Release E | 512K | D = 256K | 256K |
Release D | M |

Figure-9: Buddy System for 1MB memory to dynamically create partitions.

Though buddy system is variable partitions scheme, it has internal fragmentation. As
partitions are created in power of 2, any process having memory requirement less than
power of 2 in size, is allocated memory in power of 2 size.

De-allocation

In variable partitions, deallocation of memory partitions is complex, since memory
management module keeps track of the status of adjacent partitions and adjacent free
partitions are merged to create a large free partition. All the activities of allocation and
deallocation are dynamic. In Figure-8, four cases of memory deallocation are depicted.



Before X terminates After X terminates
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Figure-8

Fragmentation

Internal Fragmentation: Unused memory within partitions. Internal fragmentation
occurs in variable partitions scheme.

External Fragmentation: Unused memory external to partitions. Total memory space
exists to satisfy a memory request, but it is not contiguous. External fragmentation
occurs in variable partitions scheme. Variable partitions scheme may have internal
fragmentation, when after allocation of memory, the remaining memory is of a very
small size, in this case rather than to keep a partition of that small size in the list
better to allocate by keeping the partition of available size. The small amount
memory not being used will create an internal fragment to that partition.

Compaction

To overcome external fragmentation issue, concept of compaction was explored, where
memory contents are moved towards lower or higher addresses to create a large partition of
all free fragments of memory. Compaction is possible only if relocation is dynamic and is
done at execution time. Question arises, when to do compaction? if done at every
allocation or deallocation of partition time, it has overheads, because when system is doing
compaction, system is not doing any useful activity apart from moving data within memory.
Compaction could be performed at allocation time, when total available memory in
different fragments is large enough to accommodate a process. How to do compaction is
more complicated, since aim is to create a large contiguous memory by moving least
amount of memory contents.

Another solution for external fragmentation problem is to allocate more than one fragments,
i.e., allocate non-contiguous memory partitions. Theoretically it is possible to place a
program in non- contiguous memory. The problem is that of dynamic address translation.
You can recall, in all memory allocations schemes discussed so far, memory management
module uses base and limit register to generate physical address. If a process is placed in
more than one non-contiguous partition, memory management module need multiple base
and limit registers, one pair for each partition allocated. Since at that no hardware support
was available, address translation to generate physical address has to be done through
software to compute offsets for different partitions. This ad-hoc solution using multiple
base and limit registers, explored that a program is executed while placed in non-contiguous
memory.



