
Paging: Non-Contiguous Memory Allocation 
 

With hardware support to manipulate address bits in different ways, it became possible to 

allocate non-contiguous memory blocks to a program. Paging is an extension of fixed 

partitions, where more than one partition is allocated to a process. Physical memory is 

divided into fixed size blocks (2N, for addressing convenience) called frames. Similarly, 

program is divided into fixed size blocks (2N, as of frame size) called pages. Program pages 

are placed in frames and information is maintained in a table called page map table. In fixed 

partitions, list of free partitions is maintained to allocate a partition, in paging a list of free 

frames (frame table) is maintained and by searching this list a frame is allocated. In paging 

every address generated by the CPU is divided into two parts: page number (P) and a page 

displacement (offset). The page number is used as an index into a page table for physical 

address translation as shown in Figure-1. The operating system maintains a copy of the 

page table for each process, just as it maintains a copy of the instruction counter and 

register contents.  

  
        Figure-1: Page table for address translation.  

 

By using a simple example of 16 bytes of memory, we explain how frames/pages are 

created and how address bits are manipulated along with page table to generate a physical 

address. You may recall that for a 16 bytes memory (address range 0-15) we need 4 bits to 

address any location. First, we divide memory into fixed size blocks (frame) of 4 bytes. We 

have 4 frames (0-3) as shown in Figure-2.  

 

 
            Figure-2: Memory divided into frames.   



Since frame size is 4 bytes, within frame 4 bytes are addressed from 0-3. Once memory is 

divided into blocks, we address physical memory as frame number and displacement within 

frame. For contiguous memory we translate address of memory location by interpreting 4 

address bits value. When memory is divided into fixed size blocks, we can translate address 

using frame number and displacement within frame.  To further clarify address translation, 

we use a program of 8 bytes, along with addresses in decimal(binary) and divided into 

pages of 4 byte as shown in Figure-3. For this program we have 2 pages (page-0, and page-

1). 

 

 
 Figure-3: Program divided in pages 

 

Now we have pages and frames, we can place the program in memory. In paging we place a 

page in frame one by one. For our memory of 4 frames in Figure-2, we assume, that frame-

0 and frame-2 are allocated, and frame-1 and frame-3 are available. We place page-0 in 

frame-3 and enter the frame number in page table. We place page-1 in frame-1 and enter 

frame number in page table. Now we have program placed in memory and page table as 

shown in Figure-4. 

 

 
Figure-4. Program, Page Table and Memory 

 

Now to translate logical address into physical address we split logical address bits (4 bits) 

into ‘P’ and ‘D’ and physical address bits into ‘F’ and ‘D’. For our example memory of 16 

bytes, we need 4 bits to address 0-15 bytes. We have frame size of 4 bytes, so we need 2 

bits to represent 4 bytes (0-3). We have 4 frames; we need 2 bits to represent 4 frame 

numbers (0-3). Similarly, we need 2 bits to represent pages (0-3) of logical address space. 



Since page and frame size is 4 bytes, we need 2 bits to represent offset/displacement of 

pages as shown in Figure-5. 

 
    Figure-5: Logical to Physical Address 

 

We will generate physical address to access ‘C’ by using page table in Figure-5. Logical 

address of ‘C’ is ‘0010’. We interpret these 4 bits of logical address as P and D shown in 

Figure-5. In this case P is ‘00’ using page table we get frame number ‘11’. Whereas D in 

logical address is ‘10’ We combine F and D as most and least significant bits respectively 

and get physical address ‘1110’, which can be verified by looking at physical memory.  

You can compute physical address of any logical address of the program in Figure-5 by 

following the above stated steps.  

Exercise: Using physical memory of 16 bytes (Figure-2) and program of 8 bytes (Figure-3). 

With frame/page size of 2 bytes, create pages and frames. Assume program is placed in 

same memory locations as in Figure-4. Modify page table with page and frames values and 

verify address translation to access ‘A’, ‘D’, ‘E’, and ‘G’.  

 

Memory in bytes can be extended to KB, MB and GB. Same process of splitting address 

bits into P/F and D is applied. if we have memory of 64KB and frame size is 2KB, we split 

16 bits of address space as shown in below. 

16 bits 

F D 

5 bits 11 bits 

 

For a memory of 32MB, and frame size of 16KB, we will have 2048 frames. We split 25 

bits address space as shown below.    

25 bits 

F D 

11 bits 14 bits 

 

When we use a paging scheme, we have no external fragmentation: any free frame can be 

allocated to a process that needs it. However, we may have some internal fragmentation. 



Notice that frames are allocated as units. If the memory requirements of a process do not 

happen to coincide with page boundaries, the last frame allocated may not be completely 

full. If process size is independent of page size, we expect internal fragmentation to an  

average one-half page per process.  

 

Page Table Implementation   

Different operating systems use different methods for storing page tables. Some allocate a 

page table for each process. A pointer to the page table is stored with the other register 

values (like the instruction counter) in the process control block. In the simplest case, the 

page table is implemented as a set of dedicated high-speed registers. The CPU dispatcher 

reloads these registers, just as it reloads the other registers at context switch time. If the 

frame/page size is small, then for a process number of page table entries will be large and a 

large number of these registers are required, and context switch time will be increased for 

loading these registers.  

Some operating systems use main memory to store page table, and a page-table base 

register (PTBR) points to the page table. Changing page tables requires changing only this 

one register, which reduces context-switch time. In this approach the main problem is the 

time required to access a memory location. Every data/instruction access requires two 

memory accesses: one for the page table and another for the data/instruction. Thus, memory 

access is slowed by a factor of 2.  

 

The standard solution to this problem is to use a special, small, fast lookup hardware cache 

called a Translation Look-aside Buffer (TLB). The TLB is associative, high-speed memory. 

Each entry in the TLB consists of two parts: a key (or tag) and a value. When the 

associative memory is presented with an item, the item is compared with all keys 

simultaneously. If the item is found, the corresponding value field is returned. The search is 

fast; a TLB lookup in modern hardware is part of the instruction pipeline, essentially adding 

no performance penalty. To be able to execute the search within a pipeline step, however, 

the TLB must be kept small. It is typically between 32 and 1,024 entries in size. The TLB 

contains only a few of the page-table entries. When a logical address is generated by the 

CPU, its page number is presented to the TLB. If the page number is found, its frame 

number is immediately available and is used to access memory. If the page number is not in 

the TLB (known as a TLB miss), a memory reference to the page table must be made (may 

be done automatically in hardware or via an interrupt to the operating system). When the 

frame number is obtained, we can use it to access memory along with adding the page 

number and frame number to the TLB as shown in Figure-6.  

 
Figure-6: Translation Look-aside Buffer   



Memory Protection in Paging  

In a paged environment memory is protected by using protection bits in the page table for 

each frame. One bit can define a page to be read-write or read-only. Every reference to 

memory uses the page table to find the correct frame number. While the physical address is 

being computed, the protection bits can be checked to verify that no writes are being made 

to a read-only page. An attempt to write to a read-only page causes a hardware trap to the 

operating system. In fixed partitions, limit register is used to restrict a process to its logical 

address space, some systems provide hardware, in the form of a Page-Table Length 

Register (PTLR), to indicate the size of the page table. PTLR value is checked against every 

logical address to verify that the address is in the valid range for the process. Failure of this 

test causes an error trap to the operating system.  

 

Sharing in Paging  

Paging facilitates sharing of common code, which is particularly important in a time-

sharing environment. For example, a time-sharing system that supports 40 users, each of 

whom executes a text editor. If the text editor consists of 128 KB of code and 48 KB of data 

space, we need 7,040 KB to support the 40 users. If the code is reentrant code (or pure 

code), however, it can be shared. Reentrant code is non-self-modifying code: it never 

changes during execution. Thus, two or more processes can execute the same code at the 

same time. Each process has its own copy of registers and data storage to hold the data for 

the process’s execution. The data for two different processes will, of course, be different. 

Only one copy of the editor need be kept in physical memory. Each user’s page table maps 

onto the same physical copy of the editor, but data pages are mapped onto different frames. 

Thus, to support 40 users, we need only one copy of the editor (128KB), plus 40 copies of 

the 48KB of data space per user. The total space required is now 2,048KB instead of 7,040 

KB. 

Assume frame/page size is 16KB, with no code sharing, we need 440 frames, and with code 

sharing where only one copy of the editor is kept in memory, we need only 128 frames. In 

paging heavily used programs like compilers, run-time libraries, and database systems can 

also be shared. Only condition for a code to be sharable, is that of reentrant code. With  

 

                             
 



sharing of code, memory utilization is improved, and with higher degree of 

multiprogramming utilization of other resources is also improved along improved 

throughput of the system. For sharing pages, code should be multiples of frame size, 

otherwise last frame allocated will have internal fragmentation.  


