Process Co-ordination and Synchronization

We have discussed definition of a process along types of process and different states a
process goes through during its life cycle. In this lecture we will further describe how
processes coordinate their activities while sharing information and data with other
processes. A cooperating process can affect or be affected by other processes executing in
the system. Cooperating processes can either directly share a logical address space (that is,
both code and data) or be allowed to share data only through files or messages. Concurrent
access to shared data may result in data inconsistency, we will discuss various mechanisms,
to ensure the orderly execution of cooperating processes that share a logical address space,
so that data consistency is maintained.

Processes execute concurrently, and CPU is multiplexed (switched rapidly between
processes) to support concurrent execution. This means that one process may only partially
complete execution before another process is scheduled. In fact, a process may be
interrupted at any point in its instruction stream, and the processing unit may be assigned to
execute instructions of another process. By using a simple example, we explain how
concurrent execution can contribute to issues involving the integrity of data shared by
several processes.

In a single-processor multiprogramming system, the user can switch from one
application to another, and each application uses the same keyboard for input and the same
screen for output. Because each application needs to use the procedure echo, it makes sense
for it to be a shared procedure.

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}
This procedure shows the essential elements of a program that will provide a character echo
procedure; input is obtained from a keyboard one keystroke at a time. Each input character
is stored in variable chin. It is then transferred to variable chout and sent to the display. Any
program can call this procedure repeatedly to accept user input and display it on the user’s
screen. If 2 processes P1 and P2 call echo() procedure and execute it separately, it will
display character as input by the process. Since echo() procedure is shared, concurrent
execution of processes accessing echo() procedure can lead to problems. Context switch
occurs while two processes are executing statements of echo() procedure and concurrent
execution of statements can produce wrong results as shown in sequence listed below:

TO: Process P1 invokes the echo() procedure and is interrupted immediately after
Getchar() returns its value and stores it in chin. At this point, the most recently
entered character, ‘A’ is stored in variable chin.
T1: Process P2 is activated and invokes the echo() procedure, which runs to conclusion,
inputting and then displaying a single character, ‘B’ on the screen.
T2: Process P1 is resumed. By this time, the value ‘A’ has been overwritten in chin and
lost. Instead, chin contains ‘B’, which is transferred to chout() and displayed.
Thus, the first character is lost and the second character is displayed twice. This incorrect
state occurs because both processes manipulated the variable chin concurrently. A situation
like this, where several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access takes place, is




called a race condition. We further describe race condition using simple book-keeping
application where two processes share two global variables.

Suppose two items of data A and B are to be maintained in the relationship A = B. That is,
any program that updates one value must also update the other to maintain the relationship.
Now consider the following two processes:

P1:
A=A+1;
B=B+1;
P2:
B=2*B;
A=2*A;

If the state is initially consistent, each process taken separately will leave the shared data in
a consistent state. Now consider the following concurrent execution sequence, of process P1
and P2:

TO: A=A+1;;

T1: B=2*B;
T2: B=B+1;
T3 A=2*A;

At the end of this execution sequence, the condition A = B, no longer holds. For
example, if we start with A = B =1, at the end of this execution sequence we have
A=4and B=3.

To guard against the race condition, we need to ensure that only one process at a time can
be manipulating shared variables. Situations such as the one just described occur frequently
in operating systems as different parts of the system manipulate shared resources. Such
situations are studied as a critical problem, which needs to be addressed to get required
results of concurrent processes sharing resources.

Critical-Section Problem

A process is in critical section, when the process may be changing common variables,
updating a table, writing a file, and so on. Consider a system consisting of n processes {PO0,
P1, ..., Pn—1}. Each process has a segment of code, called a critical section. The important
feature of the system is that, when one process is executing in its critical section, no other
process is allowed to execute in its critical section. That is, no two processes are executing
in their critical sections at the same time. The solution to critical-section problem is to
design a protocol that the processes can use to cooperate. Each process must request
permission to enter its critical section. The section of code implementing this request is the
entry section. The critical section may be followed by an exit section. The remaining code
is the remainder section. The general structure of a typical process Pi is listed below.

while (true); {
beginning section;
entry section;
critical section;
exit section;
remainder section;




The entry section and exit section are underlined to highlight these important segments of
code. A solution to the critical-section problem must satisfy following 3 requirements:

1. Mutual exclusion: If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections.

2. Progress: If no process is executing in its critical section and some processes wish to
enter their critical sections, then only those processes that are not executing in their
remainder sections can participate in deciding which will enter its critical section
next, and this selection cannot be postponed indefinitely.

3. Bounded waiting: There exists a bound, or limit, on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.

In operating system design, different mechanisms were explored to solve critical section
problem. Commonly used approaches are:

e Software

e Hardware

e Operating System

e High Level Language Constructs

Software Based Solution of the Critical Section Problem
Code of the processes is embedded with the instructions to discipline their activities to
ensure that shared resources are accessed and satisfy the requirements for the solution of the
critical-section problem. Different attempts were made to provide software based solution,
here we describe Peterson’s solution [Peterson 1981]. This solution is restricted to two
processes that alternate execution between their critical sections and remainder sections.
The processes are numbered PO and P1. Peterson’s solution requires two processes to share
two data items:

int turn;

boolean flag[2];

For convenience, when presenting Pi, we use Pj to denote the other process; which in this
case means, j equals 1 — i. The variable turn indicates whose turn it is to enter its critical
section. That is, if turn == i, then process Pi is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section. For example, if
flag[i] is true, this value indicates that Po is ready to enter its critical section. Now we can
describe the algorithm listed below:
Process P(i) {
while (true) {

beginning section

flag[i] = true;

turn =j;

while (flag[j] && turn ==j)

do-nothing;

<Critical Section>;

flag[i] = false;

remainder section



To enter the critical section, process Pi first sets flag[i] to be true and then sets turn to the
value j, thereby asserting that if the other process wishes to enter the critical section, it can
do so. If both processes try to enter at the same time, turn will be set to both i and j at
roughly the same time. Only one of these assignments will last; the other will occur but will
be overwritten immediately. The eventual value of turn determines which of the two
processes is allowed to enter its critical section first.
We can prove that this solution is correct and can do that by showing that:

1. Mutual exclusion is preserved.

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met
To prove property 1, we note that each Pi enters its critical section only if either
flag[j] == false or turn == i. Also note that, if both processes can be executing in their
critical sections at the same time, then flag[0] == flag[1] == true. These two observations
imply that PO and P1 could not have successfully executed their while statements at about
the same time, since the value of turn can be either 0 or 1 but cannot be both. Hence, one of
the processes say, Pj must have successfully executed the while statement, whereas Pi had
to execute at least one additional statement (“turn == j”). However, at that time,
flag[j] == true and turn == j, and this condition will persist as long as Pj is in its critical
section; as a result, mutual exclusion is preserved.
To prove properties 2 and 3, we note that a process Pi can be prevented from entering the
critical section only if it is stuck in the while loop with the condition flag[j] == true and
turn == j; this loop is the only one possible. If Pj is not ready to enter the critical section,
then flag[j] == false, and Pi can enter its critical section. If Pj has set flag[j] to true and is
also executing in its while statement, then either turn == i or turn ==j. If turn == i, then Pi
will enter the critical section. If turn == j, then Pj will enter the critical section. However,
once Pj exits its critical section, it will reset flag[j] to false, allowing Pi to enter its critical
section. If Pj resets flag[j] to true, it must also set turn to i. Thus, since Pi does not change
the value of the variable turn while executing the while statement, Pi will enter the critical
section (progress) after at most one entry by Pj (bounded waiting).

We further explain the Peterson’s solution by using simple book-keeping application
discussed earlier. Shared variables are listed below:

int turn, A, B; (A=B=2)

boolean flag[2]; Initially flag[i] = flag[j] = false;

Pi and Pj code along with critical section code, entry to critical section and exit sections.
Pi ()

while (true); {
; /* beginning section */

flag[i] = true;

turn =j;

while (flag[j] && turn ==j);
A=A+1; /*Critical Section */
B=B+1;

flagl[i] = false;

remainder section

}do



Pj ()
while (true); {
; /* beginning section */
flag[j] = true;
turn =i;
while (flag[i] && turn ==1i);
B=2 *B; /* Critical Section */
A=2*A;
flag[j] = false;
; /* remainder section */
}do
Now we execute statements (for that we execute process Pi and Pj) in the same sequence.
TO: A = A+1; - process Pi is executed. It will set flag][i] to true, and turn to ‘j’.
Process Pi will enter critical section and increment value of ‘A’ (3). Time slice
expires, and context switch is made.
T1: B =2*B; - process Pj is executed. It will set flag[j] to true, and turn to ‘i’. Now
flag[j] == true and turn ==i, so Pj is executing while statement and will not enter in
its Critical Section and will waste its time slice.
T2: B= B+1; - process Pi is to be executed. It will execute statement from the point
when TO time slice expired. Process Pi increment value of ‘B’ (3). It will continue to
execute other statements and exit critical section by setting flag[i] to false.
T3: Process Pj is allocated another time slice, and will continue from the point where
it was context switched at expiry of T1. Now flag[i] is false and turn =1, so Pj will
enter critical section, and execute B = 2 *B; and setting value of B to ‘6’. After that
next statement A = 2 * A; is executed, setting value of A to ‘6’. After that Pj will exit
critical section by setting flag[i] to false.
While tracing the code, we noticed that Peterson’s solution ensures that an any given time
only one process is in critical section, to satisfy Mutual Exclusion requirement. To prove
properties 2 and 3, we note that a process Pj is prevented from entering the critical section,
since it was stuck in the while loop with the condition flag[i] == true and turn ==1i. When
Pi exits its critical section, it will reset flag[i] to false, allowing Pj to enter its critical
section. If Pj resets flag[j] to true, it must also set turn to i. Thus, since Pj does not change
the value of the variable turn while executing the while statement, Pj will enter the critical
section (progress) after at most one entry by Pi (bounded waiting). If you look carefully
Peterson’s solution in this example, it actually executes processes in alternate way, by
synchronizing processes to satisfy critical section solution requirements. Software-based
solutions are not guaranteed to work on modern computer architectures. Software-based
solutions employ busy waiting, where a process continues to use CPU time while it is
waiting for access to a critical section.

Hardware Based Solution of the Critical Section Problem

Mutual exclusion can easily be ensured by preventing a process from being interrupted. By
using disabling and enabling interrupts primitives defined by the OS kernel. In the critical
section problem process we can use disable interrupt at the entry section, and enable
interrupt at exit section as listed below.



while (true); {
disable interrupts /* entry section */
critical section

disable interrupts /* exit section */

remainder section

}
Though the solution seems simple, the system may miss some important interrupts.
Processor designers have provided special hardware instructions that allow us either to test
and modify the content of a word or to swap the contents of two words atomically-that is, as
one uninterruptible unit. During execution of this type of instruction, access to the memory
location is blocked for any other instruction referencing that location. In a relatively simple
manner, these special instructions can be used to solve the critical-section problem. In the
following section we describe at an abstract level concepts behind these types of
instructions by describing the test and set() and compare and swap instructions.
The test&set() instruction can be defined as follows:

test&set (lock) {

result = lock; /* return result value of ‘lock’ and */
lock =1; /* set value of ‘lock’ to 1 */
return result;

}
The important characteristic of this instruction is that it read a value and write a new value
atomically, and hardware is responsible for implementing this correctly. Thus, if two
test&set() instructions are initiated by two processes, they will be executed sequentially in
some arbitrary order. If the machine supports the test&set() instruction, then it can be used
to ensure mutual exclusion by declaring a variable lock, initialized to ‘0.
The structure of process Pi is listed below:
Process P(i)
while (condition) {
while (test&set(&lock) == 1)
; /* do nothing */
< C.S.>; [*critical section */
lock = 0;
/* remainder section */
}
Compare and Swap instruction (compare&swap) also called a compare and exchange
instruction, can be defined as follows:
compare&swap (*memory, regl, reg2) {
if (regl == *memory) { /* If address memory ==regl,
*memory =reg2; /*then putreg2in memory
return *memory;
}
The instruction checks a memory location (*memory) against regl value. If the memory
location’s current value is regl, it is replaced with value of reg2; otherwise, it is left
unchanged. The old memory value is always returned; thus, the memory location has been
updated if the returned value is the same as the regl value. This atomic instruction therefore
has two parts: A compare is made between a memory value and a regl value; if the values
are the same, a swap occurs. The entire compare and swap function is carried out



atomically, that means, it is not subject to interruption. This instruction can be used to
ensure mutual exclusion by declaring a shared variable lock, which is initialized to ‘0’.
Process P(i)
while (true) {
while (compare&swap(lock, 0, 1) == 1)
/* do nothing */;
<C.S. code>; /* critical section */;
lock = 0;
/* remainder */;
}
}

Locks (spin locks)
To solve the critical-section problem using special hardware instructions is complicated and
generally these instructions are inaccessible to application programmers. Operating-systems
designers build software tools to solve the critical-section problem. The simplest of these
tools is the lock and works as follow:

Lock: prevents someone from doing something.

Lock before entering critical section and before accessing shared data.

Unlock when leaving, after accessing shared data.

Wait if locked.
We can use the lock to protect critical sections and prevent race conditions. In this case,
process must acquire the lock before entering a critical section; it releases the lock when it
exits the critical section. The acquire() function acquires the lock, and the release() function
releases the lock as listed below:

acquire() { release() {
while (lavailable) available = true:

. /* busy wait *
available = false::

1
]

A lock has a boolean variable whose value indicates if the lock is available or not. If the
lock is available, a call to acquire() succeeds, and the lock is then considered unavailable.
Calls to either acquire() or release() must be performed atomically. A process that attempts
to acquire an unavailable lock, waits till the lock is released. The critical section problem
can be solved by using locks as listed below:

P (i)
while(condition) {
acquire() lock;
<Critical Section>
release(lock);
remaining Section
}
The locks are often implemented using special hardware instructions (test&set or
compare&swap) or disabling/enabling interrupts. The main disadvantage of using locks is
that it requires busy waiting, and wastes CPU cycles that some other process might be able



to use productively. While a process is in its critical section, any other process that tries to
enter its critical section must loop continuously in the call to acquire() the lock. This type of
lock is also called a spinlock because the process “spins” while waiting for the lock to
become available.

References

[Peterson 1981] G. L. Peterson, “Myths About the Mutual Exclusion Problem”,
Information Processing Letters, Volume 12, Number 3 (1981).

[Silberschatz 2013] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, Ninth Edition, Wiley 2013.

[Stallings 2012] W. Stallings, Operating systems: internals and design principles, 7th
Edition, Prentice Hall 2012.



